Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-66159-4_5guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Logic and Languages of Higher-Dimensional Automata

Published: 12 August 2024 Publication History

Abstract

In this paper we study finite higher-dimensional automata (HDAs) from the logical point of view. Languages of HDAs are sets of finite bounded-width interval pomsets with interfaces (iiPomsk) closed under order extension. We prove that languages of HDAs are MSO-definable. For the converse, we show that the order extensions of MSO-definable sets of iiPomsk are languages of HDAs. Furthermore, both constructions are effective. As a consequence, unlike the case of all pomsets, the order extension of any MSO-definable set of iiPomsk is MSO-definable.

References

[1]
Amrane, A., Bazille, H., Clement, E., Fahrenberg, U.: Languages of higher-dimensional timed automata. In: PETRI NETS, 2024 (2024). Accepted. https://arxiv.org/abs/2401.17444
[2]
Amrane, A., Bazille, H., Fahrenberg, U., Ziemiański, K.: Closure and decision properties for higher-dimensional automata. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. LNCS, vol. 14446, pp. 295–312. Springer, Cham (2023).
[3]
Bedon, N.: Logic and branching automata. Log. Methods Comput. Sci. 11(4) (2015)
[4]
Brown R and Higgins PJ On the algebra of cubes J. Pure Appl. Alg. 1981 21 233-260
[5]
Richard Büchi, J.: Weak second order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)
[6]
Richard Büchi, J.: On a decision method in restricted second order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.), LMPS’60, pp. 1–11. Stanford University Press (1962)
[7]
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
[8]
Doner J Tree acceptors and some of their applications J. Comput. Syst. Sci. 1970 4 5 406-451
[9]
Dubut J, Goubault É, and Goubault-Larrecq J Halldórsson MM, Iwama K, Kobayashi N, and Speckmann B Natural homology Automata, Languages, and Programming 2015 Heidelberg Springer 171-183
[10]
Elgot CC Decision problems of finite automata design and related arithmetics Trans. Am. Math. Soc. 1961 98 21-52
[11]
Fahrenberg U Sassone V A category of higher-dimensional automata Foundations of Software Science and Computational Structures 2005 Heidelberg Springer 187-201
[12]
Fahrenberg, U.: Higher-dimensional timed and hybrid automata. Leibniz Trans. Embed. Syst. 8(2), 03:1–03:16 (2022)
[13]
Fahrenberg U, Johansen C, Struth G, and Ziemiański K Languages of higher-dimensional automata Math. Struct. Comput. Sci. 2021 31 5 575-613
[14]
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.), CONCUR, volume 243 of Leibniz International Proceedings in Informatics, pp. 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
[15]
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(B), 104914 (2022)
[16]
Fahrenberg U and Raussen M Reparametrizations of continuous paths J. Homotopy Relat. Struct. 2007 2 2 93-117
[17]
Fahrenberg, U., Ziemiański, K.: A myhill-nerode theorem for higher-dimensional automata. In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. LNCS, vol. 13929, pp. 167–188. Springer, Cham (2023).
[18]
Fajstrup L, Goubault É, Haucourt E, Mimram S, and Raussen M Seidl H Trace spaces: an efficient new technique for state-space reduction Programming Languages and Systems 2012 Heidelberg Springer 274-294
[19]
Fajstrup L, Goubault E, Haucourt E, Mimram S, and Raussen M Directed Algebraic Topology and Concurrency 2016 Cham Springer
[20]
Fajstrup L, Raussen M, Goubault E, and Haucourt E Components of the fundamental category Appl. Categ. Struct. 2004 12 81-108
[21]
Fanchon J and Morin R Franceschinis G and Wolf K Pomset languages of finite step transition systems Applications and Theory of Petri Nets 2009 Heidelberg Springer 83-102
[22]
Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, Hoboken (1985)
[23]
Genest B, Kuske D, and Muscholl A A Kleene theorem and model checking algorithms for existentially bounded communicating automata Inf. Comput. 2006 204 6 920-956
[24]
Grabowski J On partial languages Fundam. Inform. 1981 4 2 427
[25]
Grandis M and Mauri L Cubical sets and their site Theory Appl. Categ. 2003 11 8 185-211
[26]
Janicki R and Koutny M Operational semantics, interval orders and sequences of antichains Fundam. Inform. 2019 169 1–2 31-55
[27]
Kahl T Topological abstraction of higher-dimensional automata Theor. Comput. Sci. 2016 631 97-117
[28]
Kahl, T.: Weak equivalence of higher-dimensional automata. Discret. Math. Theor. Comput. Sci. 23(1) (2021)
[29]
Kuske D Montanari U, Rolim JDP, and Welzl E Infinite series-parallel posets: logic and languages Automata, Languages and Programming 2000 Heidelberg Springer 648-662
[30]
Kuske D and Morin R Pomsets for local trace languages J. Autom. Lang. Comb. 2002 7 2 187-224
[31]
Pratt, V.R.: Modeling concurrency with geometry. In: POPL, pp. 311–322. ACM Press, New York City (1991)
[32]
Rabin MO Decidability of second-order theories and automata on infinite trees Trans. Am. Math. Soc. 1969 141 1-35
[33]
Serre, J.-P.: Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale Supérieure, Paris, France (1951)
[34]
Thatcher JW and Wright JB Generalized finite automata theory with an application to a decision problem of second-order logic Math. Syst. Theory 1968 2 1 57-81
[35]
Thomas, W.: On logical definability of trace languages. In: Algebraic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Technical University of Munich, pp. 172–182 (1990)
[36]
Thomas W Rozenberg G and Salomaa A Languages, automata, and logic Handbook of Formal Languages 1997 Heidelberg Springer 389-455
[37]
Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Sib. Math. J. 3, 103–131 (1962). In Russian; English translation in Amer. Math. Soc. Transl. 59(1966), 23–55
[38]
van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email message, June 1991. http://theory.stanford.edu/~rvg/hda
[39]
Wiener N A contribution to the theory of relative position Proc. Camb. Philos. Soc. 1914 17 441-449
[40]
Zielonka W Notes on finite asynchronous automata RAIRO - Informatique Théorique et Applications 1987 21 2 99-135
[41]
Ziemiański K Stable components of directed spaces Appl. Categ. Struct. 2019 27 3 217-244

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Developments in Language Theory: 28th International Conference, DLT 2024, Göttingen, Germany, August 12–16, 2024, Proceedings
Aug 2024
310 pages
ISBN:978-3-031-66158-7
DOI:10.1007/978-3-031-66159-4
  • Editors:
  • Joel D. Day,
  • Florin Manea

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 August 2024

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media