Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-93037-4_15guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Interaction Content Aware Network Embedding via Co-embedding of Nodes and Edges

Published: 20 June 2018 Publication History

Abstract

Network embedding has been a hot topic as it can learn node representations that encode the network structure resulting from node interactions. In this paper, besides the network structure, the interaction content within which each interaction arises is also embedded because it reveals interaction preferences of the two nodes involved. Specifically, we propose interaction content aware network embedding (ICANE) via co-embedding of nodes and edges. The embedding of edges is to learn edge representations that preserve the interaction content, which then can be incorporated into node representations through edge representations. Experiments demonstrate ICANE outperforms five recent network embedding models in visualization, link prediction and classification.

References

[1]
Armijo L Minimization of functions having Lipschitz continuous first partial derivatives Pac. J. Math. 1966 16 1 1-3
[2]
Bengio Y, Lamblin P, Popovici D, Larochelle H, et al. Greedy layer-wise training of deep networks Adv. Neural Inf. Process. Syst. 2007 19 153
[3]
Bezdek JC and Hathaway RJ Pal NR and Sugeno M Some notes on alternating optimization Advances in Soft Computing — AFSS 2002 2002 Heidelberg Springer 288-300
[4]
Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)
[5]
Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119–128. ACM (2015)
[6]
Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM (2017)
[7]
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
[8]
Li, J., Zhu, J., Zhang, B.: Discriminative deep random walk for network classification. In: ACL, vol. 1 (2016)
[9]
Liben-Nowell D and Kleinberg J The link-prediction problem for social networks J. Am. Soc. Inf. Sci. Technol. 2007 58 7 1019-1031
[10]
Van der Maaten L and Hinton G Visualizing data using t-SNE J. Mach. Learn. Res. 2008 9 2579–2605 85
[11]
McAuley J and Leskovec J Fitzgibbon A, Lazebnik S, Perona P, Sato Y, and Schmid C Image labeling on a network: using social-network metadata for image classification Computer Vision – ECCV 2012 2012 Heidelberg Springer 828-841
[12]
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: KDD, pp. 1105–1114 (2016)
[13]
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)
[14]
Qi, G.J., Aggarwal, C.C., Huang, T.: Community detection with edge content in social media networks. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 534–545. IEEE (2012)
[15]
Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174. ACM (2015)
[16]
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)
[17]
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)
[18]
Tseng P Convergence of a block coordinate descent method for nondifferentiable minimization J. Optim. Theory Appl. 2001 109 3 475-494
[19]
Tu, C., Zhang, W., Liu, Z., Sun, M.: Max-margin DeepWalk: discriminative learning of network representation. In: IJCAI, pp. 3889–3895 (2016)
[20]
Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)
[21]
Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017)
[22]
Xu, L., Wei, X., Cao, J., Yu, P.S.: Embedding of Embedding (EOE): joint embedding for coupled heterogeneous networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 741–749. ACM (2017)
[23]
Xu, L., Wei, X., Cao, J., Yu, P.S.: Multi-task network embedding. In: Proceedings of the Fourth IEEE International Conference on Data Science and Advanced Analytics, pp. 571–580. IEEE (2017)
[24]
Xu, L., Wei, X., Cao, J., Yu, P.S.: Multiple social role embedding. In: Proceedings of the Fourth IEEE International Conference on Data Science and Advanced Analytics, pp. 581–589. IEEE (2017)
[25]
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, pp. 2111–2117 (2015)
[26]
Yang, C., Sun, M., Liu, Z., Tu, C.: Fast network embedding enhancement via high order proximity approximation. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, pp. 19–25 (2017)
[27]
Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II
Jun 2018
621 pages
ISBN:978-3-319-93036-7
DOI:10.1007/978-3-319-93037-4
  • Editors:
  • Dinh Phung,
  • Vincent S. Tseng,
  • Geoffrey I. Webb,
  • Bao Ho,
  • Mohadeseh Ganji,
  • Lida Rashidi

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 20 June 2018

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media