Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-33765-9_59guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Image labeling on a network: using social-network metadata for image classification

Published: 07 October 2012 Publication History

Abstract

Large-scale image retrieval benchmarks invariably consist of images from the Web. Many of these benchmarks are derived from online photo sharing networks, like Flickr, which in addition to hosting images also provide a highly interactive social community. Such communities generate rich metadata that can naturally be harnessed for image classification and retrieval. Here we study four popular benchmark datasets, extending them with social-network metadata, such as the groups to which each image belongs, the comment thread associated with the image, who uploaded it, their location, and their network of friends. Since these types of data are inherently relational, we propose a model that explicitly accounts for the interdependencies between images sharing common properties. We model the task as a binary labeling problem on a network, and use structured learning techniques to learn model parameters. We find that social-network metadata are useful in a variety of classification tasks, in many cases outperforming methods based on image content.

References

[1]
Everingham, M., Van Gool, L.J., Williams, C., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV (2010).
[2]
Huiskes, M., Lew, M.: The MIR Flickr retrieval evaluation. In: CIVR (2008).
[3]
Nowak, S., Huiskes, M.: New strategies for image annotation: Overview of the photo annotation task at ImageCLEF 2010. In: CLEF (Notebook Papers/ LABs/Workshops) (2010).
[4]
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.T.: NUS-WIDE: A real-world web image database from the National University of Singapore. In: CIVR (2009).
[5]
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009).
[6]
Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: CVPR (2010).
[7]
Lindstaedt, S., Pammer, V., Mörzinger, R., Kern, R., Mülner, H., Wagner, C.: Recommending tags for pictures based on text, visual content and user context. In: Internet and Web Applications and Services (2008).
[8]
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW (2008).
[9]
Sawant, N., Datta, R., Li, J., Wang, J.: Quest for relevant tags using local interaction networks and visual content. In: MIR (2010).
[10]
Stone, Z., Zickler, T., Darrell, T.: Autotagging Facebook: Social network context improves photo annotation. In: CVPR Workshop on Internet Vision (2008).
[11]
Luo, J., Boutell, M., Brown, C.: Pictures are not taken in a vacuum - an overview of exploiting context for semantic scene content understanding. IEEE Signal Processing Magazine (2006).
[12]
Li, Y., Crandall, D., Huttenlocher, D.: Landmark classification in large-scale image collections. In: ICCV (2009).
[13]
Kalogerakis, E., Vesselova, O., Hays, J., Efros, A., Hertzmann, A.: Image sequence geolocation with human travel priors. In: ICCV (2009).
[14]
Joshi, D., Luo, J., Yu, J., Lei, P., Gallagher, A.: Using geotags to derive rich tag-clouds for image annotation. In: Social Media Modeling and Computing (2011).
[15]
Mensink, T., Verbeek, J., Csurka, G.: Trans media relevance feedback for image autoannotation. In: BMVC (2010).
[16]
Denoyer, L., Gallinari, P.: A ranking based model for automatic image annotation in a social network. In: ICWSM (2010).
[17]
Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 65-81. Springer, Heidelberg (2002).
[18]
Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based image classification. IEEE Trans. on Neural Networks (1999).
[19]
Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathematics (2002).
[20]
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. on PAMI (2001).
[21]
Strandmark, P., Kahl, F.: Parallel and distributed graph cuts by dual decomposition. In: CVPR (2010).
[22]
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. JMLR (2005).
[23]
Teo, C.H., Smola, A., Vishwanathan, S., Le, Q.: A scalable modular convex solver for regularized risk minimization. In: KDD (2007).
[24]
Petterson, J., Caetano, T.: Submodular multi-label learning. In: NIPS (2011).
[25]
van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. on PAMI (2010).
[26]
Huiskes, M., Thomee, B., Lew, M.: New trends and ideas in visual concept detection: the MIR Flickr retrieval evaluation initiative. In: CIVR (2010).

Cited By

View all
  • (2024)Adversarial attacks on combinatorial multi-armed banditsProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692170(2505-2526)Online publication date: 21-Jul-2024
  • (2023)Modeling with homophily driven heterogeneous data in Gossip learningProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/416(3741-3749)Online publication date: 19-Aug-2023
  • (2023)Rapid Image Labeling via Neuro-Symbolic LearningProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599485(2467-2477)Online publication date: 6-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECCV'12: Proceedings of the 12th European conference on Computer Vision - Volume Part IV
October 2012
884 pages
ISBN:9783642337642
  • Editors:
  • Andrew Fitzgibbon,
  • Svetlana Lazebnik,
  • Pietro Perona,
  • Yoichi Sato,
  • Cordelia Schmid

Sponsors

  • Adobe
  • TOYOTA: TOYOTA
  • Google Inc.
  • IBMR: IBM Research
  • Microsoft Reasearch: Microsoft Reasearch

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 October 2012

Author Tags

  1. image classification
  2. social networks
  3. structured learning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Adversarial attacks on combinatorial multi-armed banditsProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692170(2505-2526)Online publication date: 21-Jul-2024
  • (2023)Modeling with homophily driven heterogeneous data in Gossip learningProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/416(3741-3749)Online publication date: 19-Aug-2023
  • (2023)Rapid Image Labeling via Neuro-Symbolic LearningProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599485(2467-2477)Online publication date: 6-Aug-2023
  • (2021)Mixup for Node and Graph ClassificationProceedings of the Web Conference 202110.1145/3442381.3449796(3663-3674)Online publication date: 19-Apr-2021
  • (2021)Deep Attentive Multimodal Network Representation Learning for Social Media ImagesACM Transactions on Internet Technology10.1145/341729521:3(1-17)Online publication date: 16-Jun-2021
  • (2021)Action recognition in still images using a multi-attention guided network with weakly supervised saliency detectionMultimedia Tools and Applications10.1007/s11042-021-11215-180:21-23(32567-32593)Online publication date: 1-Sep-2021
  • (2020)MapLURACM Transactions on Spatial Algorithms and Systems10.1145/33809736:3(1-24)Online publication date: 15-Apr-2020
  • (2020)Progressive Supervision for Node ClassificationMachine Learning and Knowledge Discovery in Databases10.1007/978-3-030-67658-2_16(266-281)Online publication date: 14-Sep-2020
  • (2020)Semantic Path-Based Learning for Review Volume PredictionAdvances in Information Retrieval10.1007/978-3-030-45439-5_54(821-835)Online publication date: 14-Apr-2020
  • (2019)Correlation constraint shortest path over large multi-relation graphsProceedings of the VLDB Endowment10.14778/3303753.330375612:5(488-501)Online publication date: 1-Jan-2019
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media