Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MapLUR: Exploring a New Paradigm for Estimating Air Pollution Using Deep Learning on Map Images

Published: 15 April 2020 Publication History

Abstract

Land-use regression (LUR) models are important for the assessment of air pollution concentrations in areas without measurement stations. While many such models exist, they often use manually constructed features based on restricted, locally available data. Thus, they are typically hard to reproduce and challenging to adapt to areas beyond those they have been developed for.
In this article, we advocate a paradigm shift for LUR models: We propose the Data-driven, Open, Global (DOG) paradigm that entails models based on purely data-driven approaches using only openly and globally available data. Progress within this paradigm will alleviate the need for experts to adapt models to the local characteristics of the available data sources and thus facilitate the generalizability of air pollution models to new areas on a global scale.
To illustrate the feasibility of the DOG paradigm for LUR, we introduce a deep-learning model called MapLUR. It is based on a convolutional neural network architecture and is trained exclusively on globally and openly available map data without requiring manual feature engineering. We compare our model to state-of-the-art baselines like linear regression, random forests and multi-layer perceptrons using a large data set of modeled NO2 concentrations in Central London. Our results show that MapLUR significantly outperforms these approaches even though they are provided with manually tailored features.
Furthermore, we illustrate that the automatic feature extraction inherent to models based on the DOG paradigm can learn features that are readily interpretable and closely resemble those commonly used in traditional LUR approaches.

References

[1]
Matthew Adams. 2015. Advancing the use of mobile monitoring data for air pollution modelling. Ph.D. Dissertation. McMaster University, Hamilton.
[2]
Air Quality Team (Greater London Authority). [n.d.]. London Atmospheric Emissions Inventory (LAEI). Retrieved from https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2013.
[3]
Md Saniul Alam and Aonghus McNabola. 2015. Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: Estimation of PM10 concentrations on a daily basis. J. Air Waste Manage. Assoc. 65, 5 (2015), 628--640.
[4]
Rahul Aralikatte, Heather Lent, Ana Valeria Gonzalez, Daniel Hershcovich, Chen Qiu, Anders Sandholm, Michael Ringaard, and Anders Søgaard. 2019. Rewarding Coreference Resolvers for Being Consistent with World Knowledge. Retrieved from http://arxiv.org/abs/1909.02392.
[5]
Yun Bai, Yong Li, Bo Zeng, Chuan Li, and Jin Zhang. 2019. Hourly PM2. 5 concentration forecast using stacked autoencoder model with emphasis on seasonality. J. Clean. Prod. 224 (2019), 739--750.
[6]
Yun Bai, Bo Zeng, Chuan Li, and Jin Zhang. 2019. An ensemble long short-term memory neural network for hourly PM2. 5 concentration forecasting. Chemosphere 222 (2019), 286--294.
[7]
Rob Beelen, Gerard Hoek, Danielle Vienneau, Marloes Eeftens, Konstantina Dimakopoulou, Xanthi Pedeli, Ming-Yi Tsai, Nino Künzli, Tamara Schikowski, Alessandro Marcon, et al. 2013. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 72 (2013), 10--23.
[8]
C. Bonferroni. 1936. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni Del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8 (1936), 3--62.
[9]
Leo Breiman. 2001. Random forests. Mach. Learn. 45, 1 (2001), 5--32.
[10]
Cole Brokamp, Roman Jandarov, M. B. Rao, Grace LeMasters, and Patrick Ryan. 2017. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 151 (2017), 1--11.
[11]
Bert Brunekreef and Stephen T. Holgate. 2002. Air pollution and health. Lancet 360, 9341 (2002), 1233--1242.
[12]
Alexander G. Buevich, Alexander N. Medvedev, Alexander P. Sergeev, Dmitry A. Tarasov, Andrey V. Shichkin, Marina V. Sergeeva, and T. B. Atanasova. 2016. Modeling of surface dust concentrations using neural networks and kriging. In AIP Conference Proceedings, Vol. 1789. AIP Publishing, 020004.
[13]
David C. Carslaw and Sean D. Beevers. 2005. Estimations of road vehicle primary NO2 exhaust emission fractions using monitoring data in London. Atmos. Environ. 39, 1 (2005), 167--177.
[14]
Alexandre Champendal, Mikhail Kanevski, and Pierre-Emmanuel Huguenot. 2014. Air pollution mapping using nonlinear land use regression models. In Proceedings of the International Conference on Computational Science and Its Applications. Springer, 682--690.
[15]
Ralph B. d’Agostino. 1971. An omnibus test of normality for moderate and large size samples. Biometrika 58, 2 (1971), 341--348.
[16]
Ralph B. d’Agostino and Egon S. Pearson. 1973. Tests for departure from normality. Empirical results for the distributions of b2 and &sqrt;b1. Biometrika 60, 3 (1973), 613--622.
[17]
Howard B. Demuth, Mark H. Beale, Orlando De Jess, and Martin T. Hagan. 2014. Neural Network Design (2nd ed.). Martin Hagan, Stillwater, OK.
[18]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’09).
[19]
Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, and Vladimir Vapnik. 1997. Support vector regression machines. In Advances in Neural Information Processing Systems. MIT Press, 155--161.
[20]
Marloes Eeftens, Rob Beelen, Kees de Hoogh, Tom Bellander, Giulia Cesaroni, Marta Cirach, Christophe Declercq, Audrius Dedele, Evi Dons, Audrey de Nazelle et al. 2012. Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 46, 20 (2012), 11195--11205.
[21]
Marloes Eeftens, Ming-Yi Tsai, Christophe Ampe, Bernhard Anwander, Rob Beelen, Tom Bellander, Giulia Cesaroni, Marta Cirach, Josef Cyrys, Kees de Hoogh, et al. 2012. Spatial variation of PM2. 5, PM10, PM2. 5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2--Results of the ESCAPE project. Atmos. Environ. 62 (2012), 303--317.
[22]
Derek M. Elsom. 1992. Atmospheric Pollution: A Global Problem. Blackwell, Oxford.
[23]
Junxiang Fan, Qi Li, Junxiong Hou, Xiao Feng, Hamed Karimian, and Shaofu Lin. 2017. A spatiotemporal prediction framework for air pollution based on deep RNN. ISPRS Ann. Photogram. Remote Sens. Spatial Info. Sci. 4 (2017), 15.
[24]
Google LLC. 2018. Google Maps. https://maps.google.com.
[25]
David Hasenfratz, Olga Saukh, Christoph Walser, Christoph Hueglin, Martin Fierz, and Lothar Thiele. 2014. Pushing the spatio-temporal resolution limit of urban air pollution maps. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom’14). IEEE, 69--77.
[26]
Gerard Hoek, Rob Beelen, Kees de Hoogh, Danielle Vienneau, John Gulliver, Paul Fischer, and David Briggs. 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42, 33 (2008), 7561--7578.
[27]
Gerard Hoek, Marloes Eeftens, Rob Beelen, Paul Fischer, Bert Brunekreef, K. Folkert Boersma, and Pepijn Veefkind. 2015. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country. Atmos. Environ. 105 (2015), 173--180.
[28]
Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-tuning for Text Classification. Retrieved from http://arxiv.org/abs/1801.06146.
[29]
Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
[30]
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[31]
Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. 2017. Self-normalizing neural networks. In Advances in Neural Information Processing Systems. MIT Press, 971--980.
[32]
Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. 2019. A comprehensive analysis of deep regression. IEEE Trans. Pattern Anal. Mach. Intell. (2019).
[33]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436.
[34]
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.
[35]
Xiaoli Li, Aorong Luo, Jiangeng Li, and Yang Li. 2019. Air pollutant concentration forecast based on support vector regression and quantum-behaved particle swarm optimization. Environ. Model. Assess. 24, 2 (Apr. 2019), 205--222.
[36]
Yuncheng Li, Jifei Huang, and Jiebo Luo. 2015. Using user generated online photos to estimate and monitor air pollution in major cities. In Proceedings of the 7th International Conference on Internet Multimedia Computing and Service. ACM, 79.
[37]
Wu Liu, Xiaodong Li, Zuo Chen, Guangming Zeng, Tomás León, Jie Liang, Guohe Huang, Zhihua Gao, Sheng Jiao, Xiaoxiao He, et al. 2015. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 116 (2015), 272--280.
[38]
Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. 2018. Exploring the Limits of Weakly Supervised Pretraining. Retrieved from http://arxiv.org/abs/1805.00932.
[39]
Julian McAuley and Jure Leskovec. 2012. Image labeling on a network: Using social-network metadata for image classification. In Proceedings of the European Conference on Computer Vision. Springer, 828--841.
[40]
Xia Meng, Li Chen, Jing Cai, Bin Zou, Chang-Fu Wu, Qingyan Fu, Yan Zhang, Yang Liu, and Haidong Kan. 2015. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 137 (2015), 308--315.
[41]
Denise R. Montagne, Gerard Hoek, Jochem O. Klompmaker, Meng Wang, Kees Meliefste, and Bert Brunekreef. 2015. Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation. Environ. Sci. Technol. 49, 14 (2015), 8712--8720.
[42]
David W. Morley and John Gulliver. 2018. A land use regression variable generation, modelling and prediction tool for air pollution exposure assessment. Environ. Model. Softw. 105 (2018), 17--23.
[43]
Sheena Muttoo, Lisa Ramsay, Bert Brunekreef, Rob Beelen, Kees Meliefste, and Rajen N. Naidoo. 2018. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total Environ. 610 (2018), 1439--1447.
[44]
Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML’10). 807--814.
[45]
OpenStreetMap contributors. 2018. Apache Module Mod_tile. Retrieved from https://github.com/openstreetmap/mod_tile.
[46]
OpenStreetMap contributors. 2018. Planet Dump Retrieved from Retrieved from https://planet.osm.org; https://www.openstreetmap.org.
[47]
E. G. Ortiz-García, S. Salcedo-Sanz, Á. M. Pérez-Bellido, J. A. Portilla-Figueras, and L. Prieto. 2010. Prediction of hourly O3 concentrations using support vector regression algorithms. Atmos. Environ. 44, 35 (2010), 4481--4488.
[48]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825--2830.
[49]
Patrick H. Ryan and Grace K. LeMasters. 2007. A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal. Toxicol. 19 (2007), 127--133.
[50]
Vikas Singh. 2016. Higher pollution episode detection using image classification techniques. Environ. Model. 8 Assess. 21, 5 (Oct. 2016), 591--601.
[51]
Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
[52]
Meng Wang, Rob Beelen, Tom Bellander, Matthias Birk, Giulia Cesaroni, Marta Cirach, Josef Cyrys, Kees de Hoogh, Christophe Declercq, Konstantina Dimakopoulou, et al. 2014. Performance of multi-city land use regression models for nitrogen dioxide and fine particles. Environ. Health Perspect. 122, 8 (2014), 843.
[53]
Kathrin Wolf, Josef Cyrys, Tatiana Harciníková, Jianwei Gu, Thomas Kusch, Regina Hampel, Alexandra Schneider, and Annette Peters. 2017. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 579 (2017), 1531--1540.
[54]
Jiansheng Wu, Jiacheng Li, Jian Peng, Weifeng Li, Guang Xu, and Chengcheng Dong. 2015. Applying land use regression model to estimate spatial variation of PM2. 5 in Beijing, China. Environ. Sci. Pollution Res. 22, 9 (2015), 7045--7061.
[55]
Jingjing Xie, Xiaoxue Wang, Yu Liu, and Yun Bai. 2018. Autoencoder-based deep belief regression network for air particulate matter concentration forecasting. J. Intell. Fuzzy Syst. 34, 6 (2018), 3475--3486.
[56]
Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.
[57]
Chao Zhang, Junchi Yan, Changsheng Li, Hao Wu, and Rongfang Bie. 2018. End-to-end learning for image-based air quality level estimation. Mach. Vision Appl. 29, 4 (2018), 601--615.

Cited By

View all
  • (2024)Enhancing spatial modeling and risk mapping of six air pollutants using synthetic data integration with convolutional neural networksFrontiers in Environmental Science10.3389/fenvs.2024.139933912Online publication date: 9-Jul-2024
  • (2024)M2-APNet: A multimodal deep learning network to predict major air pollutants from temporal satellite imagesJournal of Applied Remote Sensing10.1117/1.JRS.18.01200518:01Online publication date: 1-Jan-2024
  • (2024)Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attentionEnvironmental Data Science10.1017/eds.2024.183Online publication date: 5-Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Spatial Algorithms and Systems
ACM Transactions on Spatial Algorithms and Systems  Volume 6, Issue 3
Special Issue on Deep Learning for Spatial Algorithms and Systems
September 2020
171 pages
ISSN:2374-0353
EISSN:2374-0361
DOI:10.1145/3394669
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 April 2020
Accepted: 01 January 2020
Revised: 01 September 2019
Received: 01 May 2019
Published in TSAS Volume 6, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Land-use regression
  2. air pollution
  3. deep learning

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • DFG grant “p2Map: Learning Environmental Maps—Integrating Participatory Sensing and Human Perception”

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)43
  • Downloads (Last 6 weeks)2
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Enhancing spatial modeling and risk mapping of six air pollutants using synthetic data integration with convolutional neural networksFrontiers in Environmental Science10.3389/fenvs.2024.139933912Online publication date: 9-Jul-2024
  • (2024)M2-APNet: A multimodal deep learning network to predict major air pollutants from temporal satellite imagesJournal of Applied Remote Sensing10.1117/1.JRS.18.01200518:01Online publication date: 1-Jan-2024
  • (2024)Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attentionEnvironmental Data Science10.1017/eds.2024.183Online publication date: 5-Nov-2024
  • (2024)Do Machine Learning Methods Improve Prediction of Ambient Air Pollutants with High Spatial Contrast? A Systematic ReviewEnvironmental Research10.1016/j.envres.2024.119751(119751)Online publication date: Aug-2024
  • (2024)An Improved Activation Function in Convolution Neural Network to Estimate the Hazardous Air Pollutant Based on ImagesWireless Personal Communications: An International Journal10.1007/s11277-024-11174-4135:4(2401-2420)Online publication date: 1-Apr-2024
  • (2023)Environmental Tracking for Healthy MobilityVolunteered Geographic Information10.1007/978-3-031-35374-1_11(221-239)Online publication date: 9-Dec-2023
  • (2022)Domain Adversarial Spatial-Temporal NetworkProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557294(1905-1915)Online publication date: 17-Oct-2022
  • (2022)Data Cleaning to fine-tune a Transfer Learning approach for Air Quality Prediction2022 IEEE International Smart Cities Conference (ISC2)10.1109/ISC255366.2022.9921836(1-5)Online publication date: 26-Sep-2022
  • (2021)Error Prediction of Air Quality at Monitoring Stations Using Random Forest in a Total Error FrameworkSensors10.3390/s2106216021:6(2160)Online publication date: 19-Mar-2021
  • (2021)Do Different Deep Metric Learning Losses Lead to Similar Learned Features?2021 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV48922.2021.01047(10624-10634)Online publication date: Oct-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media