Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-540-73871-8_14guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Survey of Improving Naive Bayes for Classification

Published: 06 August 2007 Publication History

Abstract

The attribute conditional independence assumption of naive Bayes essentially ignores attribute dependencies and is often violated. On the other hand, although a Bayesian network can represent arbitrary attribute dependencies, learning an optimal Bayesian network classifier from data is intractable. Thus, learning improved naive Bayes has attracted much attention from researchers and presented many effective and efficient improved algorithms. In this paper, we review some of these improved algorithms and single out four main improved approaches: 1) Feature selection; 2) Structure extension; 3) Local learning; 4) Data expansion. We experimentally tested these approaches using the whole 36 UCI data sets selected by Weka, and compared them to naive Bayes. The experimental results show that all these approaches are effective. In the end, we discuss some main directions for future research on Bayesian network classifiers.

References

[1]
Langley, P., Iba, W., Thomas, K.: An analysis of Bayesian classifiers. In: Proceedings of the Tenth National Conference of Artificial Intelligence, pp. 223-228. AAAI Press, Stanford (1992).
[2]
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco, CA (1988).
[3]
Chickering, D.M.: Learning Bayesian networks is NP-Complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121-130. Springer, Heidelberg (1996).
[4]
Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 339-406 (1994).
[5]
Jiang, L., Zhang, H., Cai, Z., Su, J.: Evolutional Naive Bayes. In: Proceedings of the 1st International Symposium on Intelligent Computation and its Applications, ISICA, China University of Geosciences Press, pp. 344-350 (2005).
[6]
Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence journal, special issue on relevance 97(1-2), 273-324 (1997).
[7]
Ratanamahatana, C.A., Gunopulos, D.: Scaling up the Naive Bayesian Classifier: Using Decision Trees for Feature Selection. In: proceedings of Workshop on Data Cleaning and Preprocessing (DCAP 2002), at IEEE International Conference on Data Mining (ICDM 2002), Maebashi, Japan (2002).
[8]
Friedman, Geiger, Goldszmidt.: Bayesian Network Classifiers. Machine Learning 29, 131-163 (1997).
[9]
Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory 14, 462C-467 (1968).
[10]
Keogh, E., Pazzani, M.: Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics, pp. 225C-230 (1999).
[11]
Zhang, H., Ling, C.X.: An improved learning algorithm for augmented naive Bayes. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 581-586. Springer, Heidelberg (2001).
[12]
Jiang, L., Zhang, H., Cai, Z., Su, J.: One Dependence Augmented Naive Bayes. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 186-194. Springer, Heidelberg (2005).
[13]
Webb, G.I., Boughton, J., Wang, Z.: Not so naive bayes: Aggregating one-dependence estimators. Machine Learning 58, 5-24 (2005).
[14]
Jiang, L., Zhang, H.: Weightily Averaged One-Dependence Estimators. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 970-974. Springer, Heidelberg (2006).
[15]
Zhang, H., Jiang, L., Su, J.: Hidden Naive Bayes. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, pp. 919-924. AAAI Press, Stanford (2005).
[16]
Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 202-207. AAAI Press, Stanford (1996).
[17]
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA (1993).
[18]
Frank, E., Hall, M., Pfahringer, B.: Locally Weighted Naive Bayes. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2003), pp. 249-256. Morgan Kaufmann, Seattle (2003).
[19]
Jiang, L., Zhang, H., Su, J.: Instance Cloning Local Naive Bayes. In: Kégl, B., Lapalme, G. (eds.) Canadian AI 2005. LNCS (LNAI), vol. 3501, pp. 280-291. Springer, Heidelberg (2005).
[20]
Zheng, Z., Webb, G.I.: Lazy Learning of Bayesian Rules. Machine Learning 41(1), 53-84 (2000).
[21]
Xie, Z., Hsu, W., Liu, Z., Lee, M.: A Selective Neighborhood Based Naive Bayes for Lazy Learning. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 104-114. Springer, Heidelberg (2002).
[22]
Jiang, L., Zhang, H., Cai, Z.: Dynamic K-Nearest-Neighbor Naive Bayes with Attribute Weighted. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 365-368. Springer, Heidelberg (2006).
[23]
Jiang, L., Guo, Y.: Learning Lazy Naive Bayesian Classifiers for Ranking. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2005, pp. 412-416. IEEE Computer Society Press, Los Alamitos (2005).
[24]
Jiang, L., Zhang, H.: Learning Instance Greedily Cloning Naive Bayes for Ranking. In: Proceedings of the 5th IEEE International Conference on Data Mining, ICDM 2005, pp. 202-209. IEEE Computer Society Press, Los Alamitos (2005).
[25]
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005), http://prdownloads.sourceforge.net/weka/datasets-UCI.jar
[26]
Merz, C., Murphy, P., Aha, D.: UCI repository of machine learning databases. In: Dept of ICS, University of California, Irvine (1997), http://www.ics.uci.edu/ mlearn/MLRepository.html
[27]
Nadeau, C., Bengio, Y.: Inference for the generalization error. In: Advances in Neural Information Processing Systems 12, pp. 307-313. MIT Press, Cambridge (1999).
[28]
Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45, 171-186 (2001).
[29]
Ling, C.X., Huang, J., Zhang, H.: AUC: a statistically consistent and more discriminating measure than accuracy. In: Proceedings of the International Joint Conference on Artificial Intelligence IJCAI03, Morgan Kaufmann, San Francisco (2003).
[30]
Lowd, D., Domingos, P.: Naive Bayes Models for Probability Estimation. In: Proceedings of the Twenty-Second International Conference on Machine Learning, pp. 529-536. ACM Press, New York (2005).
[31]
Jiang, L., Zhang, H.: Learning Naive Bayes for Probability Estimation by Feature Selection. In: Lamontagne, L., Marchand, M. (eds.) Canadian AI 2006. LNCS (LNAI), vol. 4013, pp. 503-514. Springer, Heidelberg (2006).
[32]
Grossman, D., Domingos, P.: Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 361-368. ACM Press, Banff, Canada (2004).
[33]
Zhang, H., Su, J.: Naive Bayesian classifiers for ranking. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 501-512. Springer, Heidelberg (2004).
[34]
Zhang, H., Jiang, L., Su, J.: Augmenting Naive Bayes for Ranking. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 1025- 1032. ACM, New York (2005).
[35]
Jiang, L., Zhang, H., Cai, Z.: Discriminatively Improving Naive Bayes by Evolutionary Feature Selection. Romanian Journal of Information Science and Technology 9(3), 163-174 (2006).

Cited By

View all
  • (2024)Anomaly-based error and intrusion detection in tabular dataFuture Generation Computer Systems10.1016/j.future.2024.06.051160:C(951-965)Online publication date: 1-Nov-2024
  • (2024)Naive Bayes classifier – An ensemble procedure for recall and precision enrichmentEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108972136:PBOnline publication date: 18-Nov-2024
  • (2023)On the Significance of Category Prediction for Code-Comment SynchronizationACM Transactions on Software Engineering and Methodology10.1145/353411732:2(1-41)Online publication date: 29-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ADMA '07: Proceedings of the 3rd international conference on Advanced Data Mining and Applications
August 2007
632 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 August 2007

Author Tags

  1. Bayesian network classifiers
  2. classification
  3. data expansion
  4. feature selection
  5. local learning
  6. naive Bayes
  7. structure extension

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Anomaly-based error and intrusion detection in tabular dataFuture Generation Computer Systems10.1016/j.future.2024.06.051160:C(951-965)Online publication date: 1-Nov-2024
  • (2024)Naive Bayes classifier – An ensemble procedure for recall and precision enrichmentEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108972136:PBOnline publication date: 18-Nov-2024
  • (2023)On the Significance of Category Prediction for Code-Comment SynchronizationACM Transactions on Software Engineering and Methodology10.1145/353411732:2(1-41)Online publication date: 29-Mar-2023
  • (2019)Bayesian genetic programming for edge detectionSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3059-323:12(4097-4112)Online publication date: 1-Jun-2019
  • (2018)Fast and Effective Classification using Parallel and Multi-start PSOJournal of Information Technology Research10.4018/JITR.201804010211:2(13-30)Online publication date: 1-Apr-2018
  • (2018)Generating machine-executable plans from end-user's natural-language instructionsKnowledge-Based Systems10.1016/j.knosys.2017.10.023140:C(15-26)Online publication date: 15-Jan-2018
  • (2016)Sentiment and Behavior Analysis of One Controversial American Individual on TwitterProceedings of the 23rd International Conference on Neural Information Processing - Volume 994810.1007/978-3-319-46672-9_57(509-518)Online publication date: 16-Oct-2016
  • (2013)Hybrid classifiers based on semantic data subspaces for two-level text categorizationInternational Journal of Hybrid Intelligent Systems10.3233/HIS-13016310:1(33-41)Online publication date: 1-Jan-2013
  • (2013)RetriBlogExpert Systems with Applications: An International Journal10.1016/j.eswa.2012.08.02040:4(1177-1195)Online publication date: 1-Mar-2013
  • (2012)An architecture-centered framework for developing blog crawlersProceedings of the 27th Annual ACM Symposium on Applied Computing10.1145/2245276.2231954(1131-1136)Online publication date: 26-Mar-2012
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media