Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-00202-1_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Planar k-Means Problem is NP-Hard

Published: 18 February 2009 Publication History

Abstract

In the k-means problem, we are given a finite set S of points in $\Re^m$, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta [6].

References

[1]
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-Hardness of Euclidean Sumof-Squares Clustering. Technical Report G-2008-33, Les Cahiers du GERAD (to appear in Machine Learning) (April 2008).
[2]
Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238-249. Springer, Heidelberg (2005).
[3]
Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. In: Proc. IEEE Symp. Foundations of Computer Science (2006).
[4]
Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proc. Symp. on Comput. Geom. (2006).
[5]
Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2007).
[6]
Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2007-0890, University of California, San Diego (2007).
[7]
de la Vega, F., Karpinski, M., Kenyon, C.: Approximation schemes for clustering problems. In: Proc. ACM Symp. Theory of Computing, pp. 50-58 (2003).
[8]
Drineas, P., Friexe, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Machine Learning 56, 9-33 (2004).
[9]
Gibson, M., Kanade, G., Krohn, E., Pirwani, I., Varadarajan, K.: On clustering to minimize the sum of radii. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2008).
[10]
Har-Peled, S., Sadri, B.: How fast is the k-means method? In: Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 877-885 (2005).
[11]
Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based clustering. In: Proc. Annual Symp. on Comput. Geom., pp. 332-339 (1994).
[12]
Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28, 89-112 (2004).
[13]
Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + Ɛ) approximation algorithm for k-means clustering in any dimensions. In: Proc. IEEE Symp. Foundations of Computer Science, pp. 454-462 (2004).
[14]
Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Ann. IEEE Symp. Foundations of Computer Science, pp. 270-281 (1980).
[15]
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329-343 (1982).
[16]
Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 129-136 (1982).
[17]
Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182-196 (1984).
[18]
Ostrovsky, R., Rabani, Y., Schulman, L., Swamy, C.: The effectiveness of Lloydtype methods for the k-means problem. In: Proc. IEEE Symp. Foundations of Computer Science (2006).
[19]
Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transactions on Computers 30, 135-140 (1981).

Cited By

View all
  • (2024)Analyzing Dα seeding for k-meansProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692177(2673-2699)Online publication date: 21-Jul-2024
  • (2023)Speedup of the k-Means Algorithm for Partitioning Large Datasets of Flat Points by a Preliminary Partition and Selecting Initial CentroidsApplied Computer Systems10.2478/acss-2023-000128:1(1-12)Online publication date: 1-Jun-2023
  • (2023)Stop using the elbow criterion for k-means and how to choose the number of clusters insteadACM SIGKDD Explorations Newsletter10.1145/3606274.360627825:1(36-42)Online publication date: 5-Jul-2023
  • Show More Cited By
  1. The Planar k-Means Problem is NP-Hard

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    WALCOM '09: Proceedings of the 3rd International Workshop on Algorithms and Computation
    February 2009
    405 pages
    ISBN:9783642002014
    • Editors:
    • Sandip Das,
    • Ryuhei Uehara

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 18 February 2009

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Analyzing Dα seeding for k-meansProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692177(2673-2699)Online publication date: 21-Jul-2024
    • (2023)Speedup of the k-Means Algorithm for Partitioning Large Datasets of Flat Points by a Preliminary Partition and Selecting Initial CentroidsApplied Computer Systems10.2478/acss-2023-000128:1(1-12)Online publication date: 1-Jun-2023
    • (2023)Stop using the elbow criterion for k-means and how to choose the number of clusters insteadACM SIGKDD Explorations Newsletter10.1145/3606274.360627825:1(36-42)Online publication date: 5-Jul-2023
    • (2021)Fuzzy clustering with similarity queriesProceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3540322(789-801)Online publication date: 6-Dec-2021
    • (2021)Efficient yet Robust Privacy Preservation for MPEG-DASH-Based Video StreamingSecurity and Communication Networks10.1155/2021/47024692021Online publication date: 1-Jan-2021
    • (2021)Semi-Supervised Multi-View Clustering with Weighted Anchor Graph EmbeddingComputational Intelligence and Neuroscience10.1155/2021/42962472021Online publication date: 1-Jan-2021
    • (2020)Simple and sharp analysis of k-means||Proceedings of the 37th International Conference on Machine Learning10.5555/3524938.3525703(8266-8275)Online publication date: 13-Jul-2020
    • (2020)k-means++Proceedings of the 37th International Conference on Machine Learning10.5555/3524938.3525116(1909-1917)Online publication date: 13-Jul-2020
    • (2020)When do birds of a feather flock together? k-Means, proximity, and conic programmingMathematical Programming: Series A and B10.1007/s10107-018-1333-x179:1-2(295-341)Online publication date: 1-Jan-2020
    • (2020)An Ising Framework for Constrained Clustering on Special Purpose HardwareIntegration of Constraint Programming, Artificial Intelligence, and Operations Research10.1007/978-3-030-58942-4_9(130-147)Online publication date: 21-Sep-2020
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media