Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-10631-6_32guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An Optimal Labeling for Node Connectivity

Published: 05 December 2009 Publication History

Abstract

Given an n -node undirected simple graph G and a positive integer k , the k-connectivity labeling problem for G seeks short labels for the nodes of G such that whether any two nodes are k -connected in G can be determined merely by their labels. For k = 1, an optimal solution to the problem is to give each node in the same connected component of G a common log2 n -bit label, uniquely chosen for this connected component. For k 2, Katz, Katz, Korman, and Peleg gave the first nontrivial solution to the problem, requiring O (2 k log n ) bits per node. The best previously known solution, due to Korman, requires O ( k 2log n ) bits per node. We give the first asymptotically optimal solution to the problem, requiring only $(2k-1)\left\lceil\log_2 n\right\rceil$ bits per node, which matches a lower bound ( k log n ) proved by Katz, Katz, Korman, and Peleg.

References

[1]
Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 927-936 (2002).
[2]
Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal on Computing 34(1), 23-40 (2005).
[3]
Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 53-62 (2002).
[4]
Korman, A.: Labeling schemes for vertex connectivity. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 102-109. Springer, Heidelberg (2007).
[5]
Korman, A.: Labeling schemes for vertex connectivity. ACM Transactions on Algorithms (to appear).
[6]
Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distributed Computing 20(4), 253-266 (2007).
[7]
Breuer, M.A.: Coding the vertexes of a graph. IEEE Transactions on Information Theory 12(2), 148-153 (1966).
[8]
Breuer, M.A., Folkman, J.: An unexpected result in coding the vertices of a graph. Journal of Mathematical Analysis and Applications 20(3), 583-600 (1967).
[9]
Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal on Discrete Mathematics 5(4), 596-603 (1992).
[10]
Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30-41. Springer, Heidelberg (1999).
[11]
Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. Discrete Applied Mathematics 145(3), 384-402 (2005).
[12]
Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal of Algorithms 53(1), 85-112 (2004).
[13]
Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476-487. Springer, Heidelberg (2001).
[14]
Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.)WADS 2001. LNCS, vol. 2125, pp. 246-257. Springer, Heidelberg (2001).
[15]
Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937-946 (2002).
[16]
Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete Mathematics 273(1-3), 115-130 (2003).
[17]
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993-1024 (2004).
[18]
Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. SIAM Journal on Discrete Mathematics 19(2), 448-462 (2005).
[19]
Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 409-418. Springer, Heidelberg (2006).
[20]
Fraigniaud, P., Korman, A.: Compact ancestry labeling schemes for XML trees. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2010).
[21]
Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling schemes for tree representation. Algorithmica 53(1), 1-15 (2009).
[22]
Fischer, J.: Short labels for lowest common ancestors in trees. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 752-763. Springer, Heidelberg (2009).
[23]
Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 547-556 (2001).
[24]
Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 1-10 (2001).
[25]
Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757-772. Springer, Heidelberg (2001).
[26]
Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 65-75. Springer, Heidelberg (2002).
[27]
Alstrup, S., Rauhe, T.: Improved labeling scheme for ancestor queries. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 947-953 (2002).
[28]
Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and a new distributed algorithm. Theory of Computing Systems 37(3), 441-456 (2004).
[29]
Kaplan, H., Milo, T., Shabo, R.: A comparison of labeling schemes for ancestor queries. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 954-963 (2002).
[30]
Peleg, D.: Informative labeling schemes for graphs. Theoretical Computer Science 340(3), 577-593 (2005).
[31]
Kao, M.Y., Li, X.Y., Wang, W.: Average case analysis for tree labelling schemes. Theoretical Computer Science 378(3), 271-291 (2007).
[32]
Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 271-281 (2002).
[33]
Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37(1), 49-75 (2004).
[34]
Korman, A.: General compact labeling schemes for dynamic trees. Distributed Computing 20(3), 179-193 (2007).
[35]
Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. Information and Computation 205(12), 1721-1740 (2007).
[36]
Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distributed Compuing 16(2-3), 111-120 (2003).

Cited By

View all
  • (2022)Optimal vertex connectivity oraclesProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3519945(151-161)Online publication date: 9-Jun-2022
  • (2022)Fault-tolerant distance labeling for planar graphsTheoretical Computer Science10.1016/j.tcs.2022.03.020918:C(48-59)Online publication date: 29-May-2022
  • (2021)Shorter labels for routing in treesProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458194(2174-2193)Online publication date: 10-Jan-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ISAAC '09: Proceedings of the 20th International Symposium on Algorithms and Computation
December 2009
1224 pages
ISBN:9783642106309
  • Editors:
  • Yingfei Dong,
  • Ding-Zhu Du,
  • Oscar Ibarra

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 December 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Optimal vertex connectivity oraclesProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3519945(151-161)Online publication date: 9-Jun-2022
  • (2022)Fault-tolerant distance labeling for planar graphsTheoretical Computer Science10.1016/j.tcs.2022.03.020918:C(48-59)Online publication date: 29-May-2022
  • (2021)Shorter labels for routing in treesProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458194(2174-2193)Online publication date: 10-Jan-2021
  • (2021)Better Distance Labeling for Unweighted Planar GraphsAlgorithms and Data Structures10.1007/978-3-030-83508-8_31(428-441)Online publication date: 9-Aug-2021
  • (2016)An Optimal Ancestry Labeling Scheme with Applications to XML Trees and Universal PosetsJournal of the ACM10.1145/279407663:1(1-31)Online publication date: 12-Feb-2016

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media