Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-33415-3_72guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Learning context cues for synapse segmentation in EM volumes

Published: 01 October 2012 Publication History

Abstract

We present a new approach for the automated segmentation of excitatory synapses in image stacks acquired by electron microscopy. We rely on a large set of image features specifically designed to take spatial context into account and train a classifier that can effectively utilize cues such as the presence of a nearby post-synaptic region. As a result, our algorithm successfully distinguishes synapses from the numerous other organelles that appear within an EM volume, including those whose local textural properties are relatively similar. This enables us to achieve very high detection rates with very few false positives.

References

[1]
Schmid, B., Schindelin, J., Cardona, A., Longair, M., Heisenberg, M.: A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics 11, 274 (2010)
[2]
Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., Chklovskii, D. B.: Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009-1020 (2010)
[3]
Herold, J., Schubert, W., Nattkemper, T. W.: Automated detection and quantification of fluorescently labeled synapses in murine brain tissue sections for high throughput applications. Journal of Biotechnology 149, 299-309 (2010)
[4]
Kreshuk, A., Straehle, C., Sommer, C., Koethe, U., Knott, G., Hamprecht, F.: Automated segmentation of synapses in 3D EM data. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 220-223 (2011)
[5]
Freund, Y., Schapire, R.: Experiments with a New Boosting Algorithm. In: ICML, pp. 148-156 (1996)
[6]
Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Transactions on Medical Imaging 31, 474-486 (2012)
[7]
Narasimha, R., Ouyang, H., Gray, A., McLaughlin, S. W., Subramaniam, S.: Automatic joint classification and segmentation of whole cell 3D images. Pattern Recognition 42, 1067-1079 (2009)
[8]
Jurrus, E., Paiva, A. R., Watanabe, S., Anderson, J. R., Jones, B. W., Whitaker, R. T., Jorgensen, E. M., Marc, R. E., Tasdizen, T.: Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Medical Image Analysis 14, 770-783 (2010)
[9]
Venkataraju, K., Paiva, A., Jurrus, E., Tasdizen, T.: Automatic markup of neural cell membranes using boosted decision stumps. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039-1042 (2009)
[10]
Fleuret, F., Geman, D.: Stationary Features and Cat Detection. JMLR 9, 2549-2578 (2008)
[11]
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Suesstrunk, S.: SLIC Superpixels. Technical Report 149300, EPFL (2010)
[12]
DeFelipe, J., Marco, P., Busturia, I., Merchán-Pérez, A.: Estimation of the number of synapses in the cerebral cortex: Methodological considerations. Cerebral Cortex 9, 722-732 (1999)

Cited By

View all
  • (2018)Synaptic Cleft Segmentation in Non-isotropic Volume Electron Microscopy of the Complete Drosophila BrainMedical Image Computing and Computer Assisted Intervention – MICCAI 201810.1007/978-3-030-00934-2_36(317-325)Online publication date: 16-Sep-2018
  • (2015)Who Is Talking to WhomProceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 - Volume 934910.1007/978-3-319-24553-9_81(661-668)Online publication date: 5-Oct-2015

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
MICCAI'12: Proceedings of the 15th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I
October 2012
746 pages
ISBN:9783642334146
  • Editors:
  • Nicholas Ayache,
  • Hervé Delingette,
  • Polina Golland,
  • Kensaku Mori

Sponsors

  • ERC MedYMA: ERC MedYMA
  • Canon Median: Canon Median
  • Siemens
  • GE HEALTHCARE: GE Healthcare
  • Philips: Philips

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Synaptic Cleft Segmentation in Non-isotropic Volume Electron Microscopy of the Complete Drosophila BrainMedical Image Computing and Computer Assisted Intervention – MICCAI 201810.1007/978-3-030-00934-2_36(317-325)Online publication date: 16-Sep-2018
  • (2015)Who Is Talking to WhomProceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 - Volume 934910.1007/978-3-319-24553-9_81(661-668)Online publication date: 5-Oct-2015

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media