Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-642-33415-3_73guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Estimation of the prior distribution of ground truth in the STAPLE algorithm: an empirical bayesian approach

Published: 01 October 2012 Publication History

Abstract

We present a new fusion algorithm for the segmentation and parcellation of magnetic resonance (MR) images of the brain. Our algorithm is a parametric empirical Bayesian extension of the STAPLE algorithm which uses the observations to accurately estimate the prior distribution of the hidden ground truth using an expectation maximization (EM) algorithm. We use IBSR dataset for the evaluation of our fusion algorithm. We segment 128 principle gray and white matter structures of the brain using our novel method and eight other state-of-the-art algorithms in the literature. Our prior distribution estimation strategy improves the accuracy of the fusion algorithm. It was shown that our new fusion algorithm has superior performance compared to the other state-of-the-art fusion methods in the literature.

References

[1]
Lötjonen, J., Wolz, R., Koikkalainen, J., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352-2365 (2010)
[2]
van Rikxoort, E., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M., Pluim, J., van Ginneken, B.: Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical Image Analysis 14(1), 39-49 (2010)
[3]
Yushkevich, P., Wang, H., Pluta, J., Das, S., Craige, C., Avants, B., Weiner, M., Mueller, S.: Nearly Automatic Segmentation of Hippocampal Subfields in In Vivo Focal T2-Weighted MRI. NeuroImage (2010)
[4]
Wang, H., Suh, J., Das, S., Pluta, J., Altinay, M., Yushkevich, P.: Regression-based label fusion for multi-atlas segmentation
[5]
Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging 29(10), 1714-1729 (2010)
[6]
Artaechevarria, X., Munoz-Barrutia, A.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging 28(8), 1266-1277 (2009)
[7]
Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903-921 (2004)
[8]
Langerak, T., van der Heide, U., Kotte, A., Viergever, M., van Vulpen, M., Pluim, J.: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple). IEEE Transactions on Medical Imaging 29(12), 2000-2008 (2010)
[9]
Asman, A., Landman, B.: Robust statistical label fusion through consensus level, labeler accuracy and truth estimation (collate). IEEE Transactions on Medical Imaging (99), 1779-1794 (2011)
[10]
Landman, B., Asman, A., Scoggins, A., Bogovic, J., Xing, F., Prince, J.: Robust statistical fusion of image labels. IEEE Transactions on Medical Imaging 31(2), 512-522 (2012)
[11]
Rohlfing, T., Russakoff, D. B., Maurer, C. R.: Expectation Maximization Strategies for Multi-atlas Multi-label Segmentation. In: Taylor, C. J., Noble, J. A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 210-221. Springer, Heidelberg (2003)
[12]
Avants, B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457-2466 (2010)
[13]
Commowick, O., Akhondi-Asl, A., Warfield, S. K.: Estimating a reference standard segmentation with spatially varying performance parameters: Local map staple. IEEE Transactions on Medical Imaging (2012)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
MICCAI'12: Proceedings of the 15th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I
October 2012
746 pages
ISBN:9783642334146
  • Editors:
  • Nicholas Ayache,
  • Hervé Delingette,
  • Polina Golland,
  • Kensaku Mori

Sponsors

  • ERC MedYMA: ERC MedYMA
  • Canon Median: Canon Median
  • Siemens
  • GE HEALTHCARE: GE Healthcare
  • Philips: Philips

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media