Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The algebraic degree of geometric optimization problems

Published: 01 December 1988 Publication History
  • Get Citation Alerts
  • Abstract

    In this paper we apply Galois methods to certain fundamentalgeometric optimization problems whose exact computational complexity has been an open problem for a long time. In particular we show that the classic Weber problem, along with theline-restricted Weber problem and itsthree-dimensional version are in general not solvable by radicals over the field of rationals. One direct consequence of these results is that for these geometric optimization problems there existsno exact algorithm under models of computation where the root of an algebraic equation is obtained using arithmetic operations and the extraction ofkth roots. This leaves only numerical or symbolic approximations to the solutions, where the complexity of the approximations is shown to be primarily a function of the algebraic degree of the optimum solution point.

    References

    [1]
    C. Bajaj, Geometric Optimization and Computational Complexity, Computer Science Technical Report TR84-629, Ph.D. thesis, Cornell University, Ithaca, NY, 1984.
    [2]
    A. Baker,Transcendental Number Theory, Cambridge University Press, Cambridge, 1975.
    [3]
    J. Burns, Abstract definition of groups of degree eight,Amer. J. Math.37 (1915), 195---214.
    [4]
    C. Butler and J. McKay, The transitive groups of degree up to 11,Comm. Algebra11 (1983), 863---911.
    [5]
    G. E. Collins and R. Loos, Real zeros of polynomials, inComputing Supplementum, vol. 4 (B. Buchbergeret al., eds.), 84---94, Springer-Verlag, Wien, New York, 1982.
    [6]
    R. Courant and H. Robbins,What is Mathematics?, Oxford University Press, Oxford, 1941.
    [7]
    E. Engeler, Lower bounds by Galois theory,Astérisque38---39 (1976), 45---52.
    [8]
    L. Gaal,Classical Galois Theory with Examples, Markham, 1971.
    [9]
    M. R. Garey, R. L. Graham, and D. S. Johnson, Some NP-complete geometric problems,Proceedings of the Eighth Symposium on the Theory of Computing, 10---22, 1976.
    [10]
    R. L. Graham, Unsolved problem P73, problems and solutions,Bull. EATCS (1984), 205---206.
    [11]
    I. N. Herstein,Topics in Algebra, 2nd ed., Wiley, New York, 1975.
    [12]
    D. E. Knuth,The Art of Computer Programming, vol. 2, 2nd edn., Addison-Wesley, Reading, MA, 1981.
    [13]
    H. W. Kuhn, On a pair of dual non-linear programs, inNon-Linear Programming (J. Abadie, ed.), 37---54, North-Holland, Amsterdam, 1967.
    [14]
    H. T. Kung, The computational complexity of algebraic numbers,SIAM J. Numer. Anal.12 (1975), 89---96.
    [15]
    S. Landau and G. L. Miller, Solvability by radicals in polynomial time,Proceedings of the 15th Annual Symposium on the Theory of Computing, 140---151, 1983.
    [16]
    J. D. Lipson, Newton's method: a great algebraic algorithm,Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation (SYMSAC), 260---270, 1976.
    [17]
    J. McKay, Some remarks on computing Galois groups,SIAM J. Comput.8 (1979), 344---347.
    [18]
    Z. A. Melzak,Companion to Concrete Mathematics, Wiley, New York, 1973.
    [19]
    G. A. Miller, Memoir on the substitution groups whose degree does not exceed eight,Amer. J. Math.21 (1899), 287---337.
    [20]
    A. M. Odlyzko, Personal Communication, May 1985.
    [21]
    B. R. Peskin and D. R. Richman, A method to compute minimal polynomials,SIAM J. Algebraic Discrete Methods6 (1985), 292---299.
    [22]
    S. M. Rump, Polynomial minimum root separation,Math. Comp.33 (1979), 327---336.
    [23]
    J. T. Schwartz, Polynomial Minimum Root Separation (Note to a Paper of S. M. Rump), Robotics Research Technical Report No. 39, New York University, 1985.
    [24]
    R. P. Stauduhar, The determination of Galois groups,Math. Comp.27 (1973), 981---996.
    [25]
    B. L. Van der Waerden,Modern Algebra, vol. 1, Ungar, New York, 1953.
    [26]
    A. Weber,Theory of the Location of Industries (translated by Carl J. Friedrich), The University of Chicago Press, Chicago, 1937.
    [27]
    H. Zassenhaus, On the group of an equation,Computers in Algebra and Number Theory, SIAM and AMS Proceedings, 69---88, 1971.

    Cited By

    View all
    • (2024)Minimizing the Size of the Uncertainty Regions for Centers of Moving EntitiesLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_18(273-287)Online publication date: 18-Mar-2024
    • (2023)Simple approximative algorithms for free-support Wasserstein barycentersComputational Optimization and Applications10.1007/s10589-023-00458-385:1(213-246)Online publication date: 1-Mar-2023
    • (2021)Reconstruct as Far as You Can: Consensus of Non-Rigid Reconstruction from Feasible RegionsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2019.293131743:2(623-637)Online publication date: 1-Feb-2021
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Discrete & Computational Geometry
    Discrete & Computational Geometry  Volume 3, Issue 2
    June 1988
    95 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 December 1988

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Minimizing the Size of the Uncertainty Regions for Centers of Moving EntitiesLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_18(273-287)Online publication date: 18-Mar-2024
    • (2023)Simple approximative algorithms for free-support Wasserstein barycentersComputational Optimization and Applications10.1007/s10589-023-00458-385:1(213-246)Online publication date: 1-Mar-2023
    • (2021)Reconstruct as Far as You Can: Consensus of Non-Rigid Reconstruction from Feasible RegionsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2019.293131743:2(623-637)Online publication date: 1-Feb-2021
    • (2021)Approximation and Complexity of the Capacitated Geometric Median ProblemComputer Science – Theory and Applications10.1007/978-3-030-79416-3_26(422-434)Online publication date: 28-Jun-2021
    • (2020)Analytics of the Multifacility Weber ProblemComputational Science and Its Applications – ICCSA 202010.1007/978-3-030-58808-3_29(395-411)Online publication date: 1-Jul-2020
    • (2019)An overlapping Voronoi diagram-based system for multi-criteria optimal location queriesGeoinformatica10.1007/s10707-018-00338-723:1(105-161)Online publication date: 1-Jan-2019
    • (2018)Gathering of robots on meeting-pointsDistributed Computing10.1007/s00446-017-0293-331:1(1-50)Online publication date: 1-Feb-2018
    • (2018)Speeding up dynamic programming in the line-constrained k-medianTheory of Computing Systems10.1007/s00224-017-9780-y62:6(1351-1365)Online publication date: 1-Aug-2018
    • (2017)Safe Charging for Wireless Power TransferIEEE/ACM Transactions on Networking10.1109/TNET.2017.275032325:6(3531-3544)Online publication date: 1-Dec-2017
    • (2017)Optimal gathering of oblivious robots in anonymous graphs and its application on trees and ringsDistributed Computing10.1007/s00446-016-0278-730:2(75-86)Online publication date: 1-Apr-2017
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media