Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An Ultra-Low-Power 9T SRAM Cell Based on Threshold Voltage Techniques

Published: 01 May 2016 Publication History

Abstract

This paper presents a new nine-transistor (9T) SRAM cell operating in the subthreshold region. In the proposed 9T SRAM cell, a suitable read operation is provided by suppressing the drain-induced barrier lowering effect and controlling the body---source voltage dynamically. Proper usage of low-threshold voltage (L-$$V_{\mathrm{t}}$$Vt) transistors in the proposed design helps to reduce the read access time and enhance the reliability in the subthreshold region. In the proposed cell, a common bit-line is used in the read and write operations. This design leads to a larger write margin without using extra circuits. The simulation results at 90 nm CMOS technology demonstrate a qualified performance of the proposed SRAM cell in terms of power dissipation, power---delay product, write margin, read access time and sensitivity to process, voltage and temperature variations as compared to the other most efficient low-voltage SRAM cells previously presented in the literature.

References

[1]
A.R. Ahmadimehr, B. Ebrahimi, A. Afzali-Kusha, A high speed subthreshold SRAM cell design. In Proceedings of Asia Symposium on Quality Electronic Design (2009), pp. 8---13
[2]
M. Alioto, Understanding DC behavior of sub-threshold CMOS logic through closed-form analysis. IEEE Trans. Circuits Syst. I 57(7), 1597---1607 (2010)
[3]
B.H. Calhoun, A.P. Chandrakasan, A 256-kb 65-nm sub-threshold SRAM design for ultra-low-voltage operation. IEEE J. Solid-State Circuits 42(3), 680---688 (2007)
[4]
I.J. Chang, J.J. Kim, S.P. Park, K. Roy, A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44(2), 650---658 (2009)
[5]
B. Ebrahimi, M. Rostami, A. Afzali-Kusha, M. Pedram, Statistical design optimization of FinFET SRAM using back-gate voltage. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(10), 1911---1916 (2011)
[6]
B. Ebrahimi, A. Afzali-Kusha, H. Mahmoodi, Robust FinFET SRAM design based on dynamic back-gate voltage adjustment. Els. J. Microelectron. Reliab. 54(11), 2604---2612 (2014)
[7]
D. Hodges, H. Jackson, R. Saleh, Analysis and Design of Digital Integrated Circuits, 3rd edn. (McGraw Hill, London, 2006)
[8]
Z. Liu, V. Kursun, Characterization of a novel nine-transistor SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(4), 488---492 (2008)
[9]
E. Macii, Ultra Low-Power Electronics and Design (Kluwer Academic Publishers, Boston, 2004)
[10]
M.H. Moaiyeri, R. Faghih Mirzaee, K. Navi, T. Nikoubin, O. Kavehei, Novel direct designs for 3-input XOR function for low power and high-speed applications. Int. J. Electron. 97(6), 647---662 (2010)
[11]
M. Moghaddam, M. Eshghi, M.H. Moaiyeri, A low-voltage single-supply level converter for sub-$$V_{\rm TH}$$VTH operation: 0.3 V to 1.2 V. Int. J. Comput. Appl. 69(2), 14---18 (2013)
[12]
S. Mukhopadhyay, H. Mahmoodi, K. Roy, Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1859---1880 (2005)
[13]
S. Narendra, V. De, S. Borkar, D. Antoniadis, A.P. Chandrakasan, Full-chip sub-threshold leakage power prediction and reduction techniques for sub-0.18-um CMOS. IEEE J. Solid-State Circuits 39(3), 501---510 (2004)
[14]
S. Timarchi, K. Navi, Arithmetic circuits of redundant SUT-RNS. IEEE Trans. Instrum. Meas. 58(9), 2959---2968 (2009)
[15]
A. Teman, L. Pergament, O. Cohen, A. Fish, A 250 mV 8 kb 40 nm ultra-low power 9T supply feedback SRAM (SF-SRAM). IEEE J. Solid-State Circuits 46(11), 2713---2726 (2011)
[16]
K. Takeda, H. Ikeda, Y. Hagihara, M. Nomura, H. Kobatake, Redefinition of write margin for next-generation SRAM and write-margin monitoring circuit. In Proceedings of IEEE International Conference on Solid---State Circuits (2006), pp. 2602---2611
[17]
N. Verma, A.P. Chandrakasan, A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuits 43(1), 141---149 (2008)
[18]
A. Wang, B. Calhoun, A.P. Chandrakasan, Sub-Threshold Design for Ultra Low-Power Systems (Springer, New York, 2006)
[19]
M. Yamaoka, et al., Low-power embedded SRAM modules with expanded margins for writing. In Proceedings of IEEE International Conference on Solid---State Circuits (2005), pp. 480---611

Cited By

View all
  • (2023)Variation-Tolerant Sense Amplifier Using Decoupling Transistors for Enhanced SRAM Read PerformanceCircuits, Systems, and Signal Processing10.1007/s00034-023-02397-042:10(5799-5810)Online publication date: 23-May-2023
  • (2022)A Stable Low Power Dissipating 9 T SRAM for Implementation of 4 × 4 Memory Array with High Frequency AnalysisWireless Personal Communications: An International Journal10.1007/s11277-022-09865-x126:4(3305-3316)Online publication date: 1-Oct-2022
  • (2022)Design and analysis of SRAM cell using reversible logic gates towards smart computingThe Journal of Supercomputing10.1007/s11227-021-03851-z78:2(2287-2306)Online publication date: 1-Feb-2022
  • Show More Cited By

Index Terms

  1. An Ultra-Low-Power 9T SRAM Cell Based on Threshold Voltage Techniques
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Circuits, Systems, and Signal Processing
      Circuits, Systems, and Signal Processing  Volume 35, Issue 5
      May 2016
      357 pages

      Publisher

      Birkhauser Boston Inc.

      United States

      Publication History

      Published: 01 May 2016

      Author Tags

      1. Leakage current
      2. Low power
      3. Low voltage
      4. PVT variations
      5. SRAM
      6. Threshold voltage techniques

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 30 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Variation-Tolerant Sense Amplifier Using Decoupling Transistors for Enhanced SRAM Read PerformanceCircuits, Systems, and Signal Processing10.1007/s00034-023-02397-042:10(5799-5810)Online publication date: 23-May-2023
      • (2022)A Stable Low Power Dissipating 9 T SRAM for Implementation of 4 × 4 Memory Array with High Frequency AnalysisWireless Personal Communications: An International Journal10.1007/s11277-022-09865-x126:4(3305-3316)Online publication date: 1-Oct-2022
      • (2022)Design and analysis of SRAM cell using reversible logic gates towards smart computingThe Journal of Supercomputing10.1007/s11227-021-03851-z78:2(2287-2306)Online publication date: 1-Feb-2022
      • (2022)Design of SRAM cell for low power portable healthcare applicationsMicrosystem Technologies10.1007/s00542-020-04809-628:3(833-844)Online publication date: 1-Mar-2022
      • (2021)Single-Ended 10T SRAM Cell with High Yield and Low Standby PowerCircuits, Systems, and Signal Processing10.1007/s00034-020-01636-y40:7(3479-3499)Online publication date: 1-Jul-2021
      • (2021)Design and Analysis of SRAM cell using Body Bias Controller for Low Power ApplicationsCircuits, Systems, and Signal Processing10.1007/s00034-020-01578-540:5(2135-2158)Online publication date: 1-May-2021
      • (2020)NVLCFF: An Energy-Efficient Magnetic Nonvolatile Level Converter Flip-Flop for Ultra-Low-Power DesignCircuits, Systems, and Signal Processing10.1007/s00034-019-01309-539:6(2841-2859)Online publication date: 1-Jun-2020
      • (2019)Proposed Design of 1 KB Memory Array Structure for Cache MemoriesWireless Personal Communications: An International Journal10.1007/s11277-019-06593-7109:2(823-847)Online publication date: 1-Nov-2019
      • (2019)Design of Novel SRAM Cell Using Hybrid VLSI Techniques for Low Leakage and High Speed in Embedded MemoriesWireless Personal Communications: An International Journal10.1007/s11277-019-06523-7108:4(2311-2339)Online publication date: 1-Oct-2019
      • (2019)A low-leakage and high-writable SRAM cell with back-gate biasing in FinFET technologyJournal of Computational Electronics10.1007/s10825-019-01327-118:2(519-526)Online publication date: 1-Jun-2019
      • Show More Cited By

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media