Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

On Some Ramsey Numbers for Quadrilaterals Versus Wheels

Published: 01 May 2014 Publication History

Abstract

For given graphs G 1 and G 2, the Ramsey number R ( G 1, G 2) is the least integer n such that every 2-coloring of the edges of K n contains a subgraph isomorphic to G 1 in the first color or a subgraph isomorphic to G 2 in the second color. Surahmat et al. proved that the Ramsey number $${R(C_4, W_n) \leq n + \lceil (n-1)/3\rceil}$$ . By using asymptotic methods one can obtain the following property: $${R(C_4, W_n) \leq n + \sqrt{n}+o(1)}$$ . In this paper we show that in fact $${R(C_4, W_n) \leq n + \sqrt{n-2}+1}$$ for n 11. Moreover, by modification of the Erd s-Rényi graph we obtain an exact value $${R(C_4, W_{q^2+1}) = q^2 + q + 1}$$ with q 4 being a prime power. In addition, we provide exact values for Ramsey numbers R ( C 4, W n ) for 14 ≤ n ≤ 17.

References

[1]
Clapham CRJ, Flockhart A, Sheehan J.: Graphs without four-cycles. J. Graph Theory 13, 29---47 (1989)
[2]
Faudree RJ, Schelp RH.: All Ramsey numbers for cycles in graphs. Discret. Math. 8, 313---329 (1974)
[3]
Ore Ø.: Note on Hamilton circuits. American Mathematical Monthly 67(1), 55 (1960)
[4]
Parsons TD.: Graphs from projective planes. Aequationes Math. 14, 167---189 (1976)
[5]
Radziszowski, SP.: Small Ramsey Numbers, Electron. J. Combin., Dynamic Survey 1, revision #13, http://www.combinatorics.org (2011)
[6]
Reiman I.: Uber ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci. Hungar. 9, 269---279 (1958)
[7]
Rosta V.: On a Ramsey Type Problem of J.A. Bondy and P. Erdös, I & II. J. Combin. Theory Series B 15, 94---120 (1973)
[8]
Surahmat, Baskoro, ET., Nababan SM., The Ramsey numbers for a cycle of length four versus a small wheel, Proceedings of the 11th Conference Indonesian Mathematics 172---178, Malang, Indonesia, July 22---25 (2002)
[9]
Surahmat, Baskoro, ET., Uttunggadewa, S., Broersma HJ., (2005) An upper bound for the Ramsey number of a cycle of length four versus wheels, LNCS 3330, Springer, Berlin, 181---184
[10]
Kung-Kuen T.: On the Ramsey number of the quadrilaterals versus the book and the wheel. Aust. J. Combin. 27, 163---167 (2003)
[11]
Yuansheng Y, Rowlison P.: On extremal graphs without four-cycles. Utilitas Math. 41, 204---210 (1992)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Graphs and Combinatorics
Graphs and Combinatorics  Volume 30, Issue 3
May 2014
259 pages
ISSN:0911-0119
EISSN:1435-5914
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 May 2014

Author Tags

  1. 05C15
  2. 05C55
  3. Quadrilateral
  4. Ramsey numbers
  5. Wheels

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media