Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Ramsey Numbers for Nontrivial Berge Cycles

Published: 04 January 2022 Publication History

Abstract

In this paper, we consider an extension of cycle-complete graph Ramsey numbers to Berge cycles in hypergraphs: for $k \geq 2$, a nontrivial Berge $k$-cycle is a family of sets $e_1,e_2,\dots,e_k$ such that $e_1 \cap e_2, e_2 \cap e_3,\dots,e_k \cap e_1$ has a system of distinct representatives and $e_1 \cap e_2 \cap \dots \cap e_k = \emptyset$. In the case that all the sets $e_i$ have size three, let $\mathcal{B}_k$ denote the family of all nontrivial Berge $k$-cycles. The Ramsey numbers $R(t,\mathcal{B}_k)$ denote the minimum $n$ such that every $n$-vertex 3-uniform hypergraph contains either a nontrivial Berge $k$-cycle or an independent set of size $t$. We prove $R(t, \mathcal{B}_{2k}) \leq t^{1 + \frac{1}{2k-1} + \frac{2}{\sqrt{\log t}}}$, and moreover, we show that if a conjecture of Erdös and Simonovits [Combinatorica, 2 (1982), pp. 275--288] on girth in graphs is true, then this is tight up to a factor $t^{o(1)}$ as $t \rightarrow \infty$.

References

[1]
N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley & Sons, Hoboken, NJ, 2016.
[2]
M. Ajtai, J. Komlós. and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A, 29 (1980), pp. 354--360.
[3]
C. T. Benson, Minimal regular graphs of girths eight and twelve, Canad. J. Math., 18 (1966), pp. 1091--1094.
[4]
B. Bollobás and E. Györi, Pentagons vs. triangles, Discrete Math., 308 (2008), pp. 4332--4336.
[5]
T. Bohman and P. Keevash, Dynamic concentration of the triangle-free process, The Seventh European Conference on Combinatorics, Graph Theory and Applications, J. Nešetřil and M. Pellegrini, eds., Edizioni della Normale, Pisa, 2013, pp. 489--495.
[6]
F. Chung, Open problems of Paul Erdös in graph theory, J. Graph Theory, 25 (1997), pp. 3--36.
[7]
R. Faudree and M. Simonovits, Cycle-supersaturated graphs, in preparation.
[8]
Y. Caro, Y. Li, C. Rousseau, and Y. Zhang, Asymptotic bounds for some bipartite graph-complete graph Ramsey numbers, Discrete Math., 220 (2000), pp. 51--56.
[9]
C. Coller-Cartaino, N. Graber, and T. Jiang, Linear Turán numbers of linear cycles and cycle-complete Ramsey numbers, Combin. Probab. Comput., 27 (2018), pp. 358--386.
[10]
S. Das, C. Lee, and B. Sudakov, Rainbow Turán problem for even cycles, European J. Combin., 34 (2013), pp. 905--915.
[11]
P. Erdös and M. Simonovits, Compactness results in extremal graph theory, Combinatorica, 2 (1982), pp. 275--288.
[12]
G. Fiz Pontiveros, S. Griffiths, and R. Morris, The triangle-free process and the Ramsey number $R(3,k)$, Mem. Amer. Math. Soc., 263 (2020), 1274.
[13]
Z. Füredi and T. Jiang, Hypergraph Turán numbers of linear cycles, J. Combin. Theory Ser. A, 123 (2014), pp. 252--270.
[14]
E. Györi and N. Lemons, 3-uniform hypergraphs avoiding a given odd cycle, Combinatorica, 32 (2012), pp. 187--203.
[15]
E. Györi and N. Lemons, Hypergraphs with no odd cycle of given length, Electron. Notes Discrete Math., 34 (2009), pp. 359--362.
[16]
J. H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^2/\log t$, Random Struct. Algorithms, 7 (1995), pp. 173--207.
[17]
A. Kostochka, D. Mubayi, and J. Verstraëte, Hypergraph Ramsey numbers: Triangles versus cliques, J. Combin. Theory. Ser. A, 120 (2013), pp. 1491--1507.
[18]
A. Kostochka, D. Mubayi, and J. Verstraëte, Turán problems and shadows I: Paths and cycles, J. Combin. Theory. Ser. A, 129 (2015), pp. 57--79.
[19]
F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, New upper bounds on the order of cages, Electron. J. Combin., 14 (1997), pp. 1--11.
[20]
F. Lazebnik and J. Verstraëte, On hypergraphs of girth five, Electron. J. Combin., 10 (2003), R25.
[21]
A. Méroueh, The Ramsey number of loose cycles versus cliques, J. Graph Theory, 90 (2019), pp. 172--188.
[22]
R. Morris and D. Saxton, The number of $C_{2l}$-free graphs, Adv. Math., 298 (2016), pp. 534--580.
[23]
D. Mubayi and J. Verstraëte, A Survey of Turán Problems for Expansions, Recent Trends in Combinatorics., IMA Vol. Math. Appl. 159, Springer, New York, 2016, pp. 117--143.
[24]
D. Mubayi and L. Yepremyan, Random Turán Theorem for Hypergraph Cycles, preprint, https://arxiv.org/abs/2007.10320.
[25]
J. Nie and J. Verstraëte, Loose Cycle-Complete Hypergraph Ramsey Numbers, preprint 2021.
[26]
I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Coll. Math. Soc. J. Bolyai, 18 (1978), pp. 939--945.
[27]
J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math., 46 (1983), pp. 83--87.
[28]
B. Sudakov, A note on odd cycle-complete graph Ramsey numbers, Electron. J. Combin., 9 (2002), N1.
[29]
H. van Maldeghem, Generalized Polygons, Monographs in Mathematics, Birkhäuser, Basel, 1998.
[30]
J. Verstraëte, Extremal problems for cycles in graphs, Recent Trends in Combinatorics, IMA Vol. Math. Appl. 159, Springer, Cham, 2016, pp. 83--116.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics  Volume 36, Issue 1
Mar 2022
897 pages
ISSN:0895-4801
DOI:10.1137/sjdmec.36.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 04 January 2022

Author Tags

  1. Ramsey numbers
  2. Berge cycles
  3. hypergraphs

Author Tag

  1. 05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media