Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Alternative integration algorithms for three-dimensional mortar contact

Published: 01 February 2017 Publication History

Abstract

In this paper, a new approach is proposed to improve efficiency of the integration procedure for mortar integrals within finite element mortar methods for contact. Appropriate approaches subdivide polygonal integration segments into triangular integration cells where well-established quadrature rules can be applied for numerical integration. Here, a subdivision of segments into quadrilateral integration cells is proposed and investigated in detail. By this procedure, the numerical effort is decreased because the number of integration cells is smaller and less quadrature points are needed. In all the aforementioned methods, necessary projections of integration points result in rational polynomials in the integrand. Thus, an exact numerical integration is impossible. Using quadrilateral integration cells additionally involves non-constant Jacobian determinants which further increases the polynomial degree of the integrand. Numerical experiments indicate, that the resulting increase in the error is small enough to be acceptable in consideration of the gained speed-up.

References

[1]
Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4---8):263---271
[2]
Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Chichester
[3]
Bernardi C, Mayday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis H, Lions JL (eds) Nonlinear partial differential equations and their applications. no. XI in Collège de Frace Seminar, Longman, Harlow, pp 13---51
[4]
Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput Methods Appl Mech Eng 200(9---12):1317---1332
[5]
Dunavant DA (1985) Economical symmetrical quadrature rules for complete polynomials over a square domain. Int J Numer Methods Eng 21(10):1777---1784
[6]
El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473---1486
[7]
Farah P, Popp A, Wall WA (2014) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55(1):209---228
[8]
Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226---244
[9]
Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37---40):5020---5036
[10]
Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9(4):913---924
[11]
Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543---571
[12]
Gitterle M (2012) A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Dissertation, Technische Universität München
[13]
Hartmann S, Brunssen S, Ramm E, Wohlmuth B (2007) Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. Int J Numer Methods Eng 70(8):883---912
[14]
Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth newton method. SIAM J Optimiz 13(3):865---888
[15]
Hüeber S, Stadler G, Wohlmuth B (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572---596
[16]
Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249---276
[17]
Kikuchi N, Oden J (1988) Contact problems in elasticity. Society for industrial and applied mathematics, Studies in applied and numerical mathematics
[18]
Laursen TA (2003) Computational contact and impact mechanics. Springer, Berlin
[19]
McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525---1547
[20]
Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82(1):99---113
[21]
Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94(3):373---389
[22]
Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354---1391
[23]
Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428---1465
[24]
Popp A (2012) Mortar methods for computational contact mechanics and general interface problems. Dissertation, Technische Universität München
[25]
Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67---80
[26]
Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305---319
[27]
Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6---8):601---629
[28]
Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45---47):4891---4913
[29]
Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6---8):555---566
[30]
Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163---180
[31]
Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989---1012
[32]
Wohlmuth BI, Krause RH (2003) Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J Sci Comput 25(1):324
[33]
Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin
[34]
Xiao H, Gimbutas Z (2010) A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput Math Appl 59(2):663---676
[35]
Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183---1225
[36]
Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4---8):497---515

Cited By

View all
  • (2023)Scalable computational kernels for mortar finite element methodsEngineering with Computers10.1007/s00366-022-01779-339:5(3691-3720)Online publication date: 25-Jan-2023
  • (2019)A segmentation-free isogeometric extended mortar contact methodComputational Mechanics10.1007/s00466-018-1599-063:2(383-407)Online publication date: 1-Feb-2019
  • (2017)Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elementsComputational Mechanics10.5555/3158457.315848060:4(585-594)Online publication date: 1-Oct-2017
  1. Alternative integration algorithms for three-dimensional mortar contact

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Computational Mechanics
      Computational Mechanics  Volume 59, Issue 2
      February 2017
      168 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 February 2017

      Author Tags

      1. Contact
      2. Mortar integral
      3. Mortar method
      4. Numerical integration
      5. Quadrilateral integration cell

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 19 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Scalable computational kernels for mortar finite element methodsEngineering with Computers10.1007/s00366-022-01779-339:5(3691-3720)Online publication date: 25-Jan-2023
      • (2019)A segmentation-free isogeometric extended mortar contact methodComputational Mechanics10.1007/s00466-018-1599-063:2(383-407)Online publication date: 1-Feb-2019
      • (2017)Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elementsComputational Mechanics10.5555/3158457.315848060:4(585-594)Online publication date: 1-Oct-2017

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media