Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A quantitative evaluation of persistent memory hash indexes

Published: 09 September 2023 Publication History

Abstract

Persistent memory (PMem) is increasingly being leveraged to build hash-based indexing structures featuring cheap persistence, high performance, and instant recovery. Especially with the release of Intel Optane DC Persistent Memory Modules, we have witnessed a flourish in (re)designing persistent hash indexes. However, most of them are focus on the evaluation of specific metrics with important properties sidestepped. Thus, it is essential to understand how the proposed hash indexes perform under a unified testing framework and how they differentiate from each other if a wider range of performance metrics are considered. To this end, this paper provides a comprehensive evaluation of persistent hash tables. In particular, we focus on the evaluation of several state-of-the-art hash tables including CCEH, Dash, PCLHT, Clevel, Viper, Halo, SOFT, and Plush, with the second-generation PMem hardware. Our evaluation was conducted using a unified benchmarking framework and representative workloads. Besides characterizing common performance properties, we also explore how hardware configurations (such as PMem bandwidth, CPU instructions, and NUMA) affect the performance of PMem-based hash tables. With our in-depth analysis, we identify design trade-offs and good paradigms in prior arts and suggest desirable optimizations and directions for the future development of PMem-based hash tables.

References

[1]
Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., et al.: A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-ram. In: IEEE International Electron Devices Meeting, 2005, pp. 459–462. IEEE (2005)
[2]
Strukov DB, Snider GS, Stewart DR, and Williams RS The missing memristor found Nature 2008 453 7191 80-83
[3]
Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, and Goodson KE Phase change memory Proc. IEEE 2010 98 12 2201-2227
[5]
Lersch, L., Hao, X., Oukid, I., Wang, T., Willhalm, T.: Evaluating persistent memory range indexes. Proc. VLDB Endowm. 13(4), 574–587 (2019). https://doi.org/10.14778/3372716.3372728
[6]
Weiland, M., Brunst, H., Quintino, T., Johnson, N., Iffrig, O., Smart, S., Herold, C., Bonanni, A., Jackson, A., Parsons, M.: An early evaluation of intel’s optane dc persistent memory module and its impact on high-performance scientific applications. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’19. Association for Computing Machinery, Denver, Colorado (2019).
[7]
Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.: An empirical guide to the behavior and use of scalable persistent memory. In: Proceedings of the 18th USENIX Conference on File and Storage Technologies, FAST’20 (2020)
[8]
Daase, B., Bollmeier, L.J., Benson, L., Rabl, T.: Maximizing persistent memory bandwidth utilization for olap workloads. In: Proceedings of the 2021 International Conference on Management of Data, SIGMOD’21. ACM, New York (2021).
[9]
Xiang, L., Zhao, X., Rao, J., Jiang, S., Jiang, H.: Characterizing the performance of intel optane persistent memory: A close look at its on-dimm buffering. In: Proceedings of the 17th European Conference on Computer Systems, EuroSys ’22, pp. 488-505. ACM (2022).
[10]
Benson, L., Papke, L., Rabl, T.: Perma-bench: Benchmarking persistent memory access. Proc. VLDB Endow. 15(11), 2463–2476 (2022). https://doi.org/10.14778/3551793.3551807
[11]
Wang, T., Johnson, R.: Scalable logging through emerging non-volatile memory. Proc. VLDB Endow. 7(10), 865–876 (2014). https://doi.org/10.14778/2732951.2732960
[12]
Nam, M., Cha, H., ri Choi, Y., Noh, S.H., Nam, B.: Write-optimized dynamic hashing for persistent memory. In: 17th USENIX Conference on File and Storage Technologies, pp. 31–44. USENIX, Boston (2019). https://www.usenix.org/conference/fast19/presentation/nam
[13]
Zuo, P., Hua, Y., Wu, J.: Write-optimized and high-performance hashing index scheme for persistent memory. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation, OSDI’18, pp. 461–476. USENIX, Carlsbad (2018)
[14]
Fan, B., Andersen, D.G., Kaminsky, M.: Memc3: Compact and concurrent memcache with dumber caching and smarter hashing. In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation, NSDI’13, pp. 371–384. USENIX, Lombard (2013)
[15]
Lim, H., Han, D., Andersen, D.G., Kaminsky, M.: MICA: A holistic approach to fast in-memory key-value storage. In: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pp. 429–444. USENIX, Seattle (2014)
[16]
Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazières D, Mitra S, Narayanan A, Parulkar G, Rosenblum M, Rumble SM, Stratmann E, and Stutsman R The case for ramclouds: scalable high-performance storage entirely in dram ACM SIGOPS Oper. Syst. Rev. 2010 43 4 92-105
[17]
Pilman, M., Bocksrocker, K., Braun, L., Marroquin, R., Kossmann, D.: Fast scans on key-value stores. Proc. VLDB Endow. 10(11), 1526–1537 (2017).
[18]
Lee, S.K., Mohan, J., Kashyap, S., Kim, T., Chidambaram, V.: Recipe: converting concurrent dram indexes to persistent-memory indexes. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP’19, pp. 462–477. ACM (2019).
[19]
Lu, B., Hao, X., Wang, T., Lo, E.: Dash: scalable hashing on persistent memory. Proc. VLDB Endow. 13(8), 1147–1161 (2020).
[20]
Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free durable sets. Proc. ACM Program. Lang. 3(OOPSLA), 1 (2019).
[21]
Vogel, L., van Renen, A., Imamura, S., Giceva, J., Neumann, T., Kemper, A.: Plush: A write-optimized persistent log-structured hash-table. Proc. VLDB Endow. 15(11), 2895-2907 (2022).
[22]
Chen, Z., Huang, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812. USENIX Association (2020). https://www.usenix.org/conference/atc20/presentation/chen
[23]
Hu, D., Chen, Z., Che, W., Sun, J., Chen, H.: Halo: A hybrid pmem-dram persistent hash index with fast recovery. In: Proceedings of the 2022 International Conference on Management of Data, SIGMOD’22, pp. 1049–1063. ACM (2022).
[24]
Zou, X., Wang, F., Feng, D., Zhu, J., Xiao, R., Su, N.: A write-optimal and concurrent persistent dynamic hashing with radix tree assistance. J. Syst. Archit. 125(C) (2022).
[25]
Zhang, B., Zheng, S., Qi, Z., Huang, L.: Nbtree: A lock-free pm-friendly persistent b+-tree for eadr-enabled pm systems. Proc. VLDB Endow. 15(6), 1187–1200 (2022).
[26]
Li, H., Berger, D.S., Hsu, L., Ernst, D., Zardoshti, P., Novakovic, S., Shah, M., Rajadnya, S., Lee, S., Agarwal, I., Hill, M.D., Fontoura, M., Bianchini, R.: Pond: Cxl-based memory pooling systems for cloud platforms. In: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Vol. 2, ASPLOS 2023, pp. 574–587. ACM, New York (2023).
[27]
Benson, L., Weisgut, M., Rabl, T.: What we can learn from persistent memory for cxl. In: B. König-Ries, S. Scherzinger, W. Lehner, G. Vossen (eds.) BTW 2023. Gesellschaft für Informatik e.V. (2023).
[28]
Jung, M.: Hello bytes, bye blocks: Pcie storage meets compute express link for memory expansion (cxl-ssd). In: Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems, HotStorage ’22, pp. 45–51. Association for Computing Machinery, New York (2022).
[29]
Benson, L., Makait, H., Rabl, T.: Viper: An efficient hybrid pmem-dram key-value store. Proc. VLDB Endow. 14(9), 1544–1556 (2021).
[30]
Intel: Persistent memory development kit (2020). https://pmem.io/
[31]
Arafa M, Fahim B, Kottapalli S, Kumar A, Looi LP, Mandava S, Rudoff A, Steiner IM, Valentine B, Vedaraman G, et al. Cascade lake: next generation intel xeon scalable processor IEEE Micro 2019 39 2 29-36
[32]
Izraelevitz, J., Yang, J., Zhang, L., Kim, J., Liu, X., Memaripour, A., Soh, Y.J., Wang, Z., Xu, Y., Dulloor, S.R., Zhao, J., Swanson, S.: Basic performance measurements of the intel optane DC persistent memory module. arXiv:1903.05714 (2019)
[33]
Intel: Intel optane dc persistent memory operating modes explained (2018). https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[34]
Haria, S., Hill, M.D., Swift, M.M.: Mod: Minimally ordered durable datastructures for persistent memory. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 775–788. ACM, Lausanne (2020).
[36]
Scargall, S.: Programming Persistent Memory. Apress (2020)
[37]
Ren, J., Hu, Q., Khan, S., Moscibroda, T.: Programming for non-volatile main memory is hard. In: Proceedings of the 8th Asia-Pacific Workshop on Systems, APSys ’17. ACM, Mumbai (2017).
[38]
Di, B., Liu, J., Chen, H., Li, D.: Fast, flexible, and comprehensive bug detection for persistent memory programs. In: Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021, pp. 503–516. ACM, New York (2021).
[39]
Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: leveraging locks for non-volatile memory consistency. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14, pp. 433–452. ACM, Portland (2014).
[40]
Izraelevitz, J., Kelly, T., Kolli, A.: Failure-atomic persistent memory updates via justdo logging. In: Proceedings of the 21st International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16, pp. 427–442. ACM, Atlanta (2016).
[41]
Arulraj J, Levandoski J, Minhas UF, and Larson PA Bztree: a high-performance latch-free range index for non-volatile memory Proc. VLDB Endow. 2018 11 5 553-565
[42]
Memaripour, A., Badam, A., Phanishayee, A., Zhou, Y., Alagappan, R., Strauss, K., Swanson, S.: Atomic in-place updates for non-volatile main memories with kamino-tx. In: Proceedings of the 12th European Conference on Computer Systems, EuroSys ’17, pp. 499–512. ACM, Belgrade (2017).
[43]
Xia, F., Jiang, D., Xiong, J., Sun, N.: Hikv: a hybrid index key-value store for dram-nvm memory systems. In: Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’17, pp. 349–362. USENIX, Santa Clara (2017)
[44]
Krishnan, R.M., Kim, J., Mathew, A., Fu, X., Demeri, A., Min, C., Kannan, S.: Durable transactional memory can scale with timestone. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 335–349. ACM, Lausanne (2020).
[45]
Memaripour, A., Izraelevitz, J., Swanson, S.: Pronto: easy and fast persistence for volatile data structures. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 789–806. ACM, Lausanne (2020).
[46]
Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: Lightweight persistent memory. In: Proceedings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pp. 91–104. ACM, Newport Beach (2011).
[47]
Debnath B, Haghdoost A, Kadav A, Khatib MG, and Ungureanu C Revisiting hash table design for phase change memory ACM SIGOPS Oper. Syst. Rev. 2016 49 2 18-26
[48]
Pagh R and Rodler FF Cuckoo hashing J. Algorithms 2004 51 2 122-144
[49]
Fagin R, Nievergelt J, Pippenger N, and Strong HR Extendible hashing-a fast access method for dynamic files ACM Trans. Database Syst. 1979 4 3 315-344
[50]
David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: the secret to scaling concurrent search data structures. In: Proceedings of the 20th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15, pp. 631–644. ACM, Istanbul (2015).
[51]
David, T., Dragojevic, A., Guerraoui, R., Zablotchi, I.: Log-free concurrent data structures. In: USENIX Annual Technical Conference, USENIX ATC ’18, pp. 373–385. USENIX (2018).
[52]
Wang, T., Levandoski, J., Larson, P.A.: Easy lock-free indexing in non-volatile memory. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 461–472 (2018).
[53]
Intel: libvmem of persistent memory development kit (2020). https://pmem.io/vmem/libvmem/
[54]
Corporation, I.: Processor counter monitor (2019). https://github.com/opcm/pcm/
[55]
Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pp. 143–154. ACM (2010).
[56]
Hao, X., Wang, T., Lersch, L., Oukid, I.: Interactive benchmarking of persistent memory indexes (2020). http://pibench.org/
[57]
Misra, P.A., Borge, M.F., Goiri, I.n., Lebeck, A.R., Zwaenepoel, W., Bianchini, R.: Managing tail latency in datacenter-scale file systems under production constraints. In: Proceedings of the 14th EuroSys Conference 2019, EuroSys ’19. ACM, Dresden, Germany (2019).
[58]
Chen Z, Che W, Hu D, He X, Sun J, and Chen H On the performance intricacies of persistent memory aware storage engines IEEE Trans. Knowl. Data Eng. 2023 1 1-19
[59]
Chen, Y., Lu, Y., Yang, F., Wang, Q., Wang, Y., Shu, J.: Flatstore: an efficient log-structured key-value storage engine for persistent memory. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 1077–1091. ACM, Lausanne (2020).
[60]
Wang, Z., Liu, X., Yang, J., Michailidis, T., Swanson, S., Zhao, J.: Characterizing and modeling non-volatile memory systems. In: Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture, MICRO’20 (2020)
[61]
Breslow, A.D., Zhang, D.P., Greathouse, J.L., Jayasena, N., Tullsen, D.M.: Horton tables: fast hash tables for in-memory data-intensive computing. In: Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’16, pp. 281–294. USENIX, Denver (2016)
[62]
Chen Z, He X, Sun J, and Chen H Have your cake and eat it (too): a concurrent hash table with hardware transactions Int. J. Parallel Program. 2018 46 4 699-709
[63]
Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch hashing. In: Proceedings of the 22nd International Symposium on Distributed Computing, DISC ’08, pp. 350–364. Springer, Arcachon (2008).
[64]
Li, D., Du, R., Liu, Z., Yang, T., Cui, B.: Multi-copy cuckoo hashing. In: Proceeding of IEEE 35th International Conference on Data Engineering, ICDE’19, pp. 1226–1237 (2019)
[65]
Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements for fast concurrent cuckoo hashing. In: Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14, pp. 1–14. ACM, Amsterdam (2014).
[66]
Metreveli Z, Zeldovich N, and Kaashoek MF Cphash: a cache-partitioned hash table SIGPLAN Not. 2012 47 8 319-320
[67]
Chen Z, He X, Sun J, Chen H, and He L Concurrent hash tables on multicore machines: comparison, evaluation and implications Fut. Gen. Comput. Syst. 2018 82 127-141
[68]
Zuo P and Hua Y A write-friendly and cache-optimized hashing scheme for non-volatile memory systems IEEE Trans. Parall. Distrib. Syst. 2017 29 5 985-998
[69]
Schwalb, D., Dreseler, M., Uflacker, M., Plattner, H.: Nvc-hashmap: a persistent and concurrent hashmap for non-volatile memories. In: Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and Analytics, IMDM’15. ACM, Kohala Coast (2015).
[70]
Liu Z and Chen S Pea hash: a performant extendible adaptive hashing index Proc. ACM Manag. Data 2023 1 1 1
[71]
Pandey, P., Bender, M.A., Conway, A., Farach-Colton, M., Kuszmaul, W., Tagliavini, G., Johnson, R.: Iceberght: High performance pmem hash tables through stability and low associativity (2022).
[72]
Zou, X., Wang, F., Feng, D., Zhu, J., Xiao, R., Su, N.: A write-optimal and concurrent persistent dynamic hashing with radix tree assistance. J. Syst. Archit. 125(C) (2022).
[73]
Li, Y., Zeng, L., Chen, G., Gu, C., Luo, F., Ding, W., Shi, Z., Fuentes, J.: A multi-hashing index for hybrid dram-nvm memory systems. J. Syst. Archit. 128(C) (2022).
[74]
Chen, S., Jin, Q.: Persistent b+-trees in non-volatile main memory. Proc. VLDB Endow. 8(7), 786–797 (2015).
[75]
Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: Fptree: A hybrid SCM-DRAM persistent and concurrent b-tree for storage class memory. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pp. 371–386. ACM, San Francisco (2016).
[76]
Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: Nv-tree: Reducing consistency cost for nvm-based single level systems. In: Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST’15, pp. 167–181. USENIX, Santa Clara (2015)
[77]
Zhou, X., Shou, L., Chen, K., Hu, W., Chen, G.: Dptree: Differential indexing for persistent memory. Proc. VLDB Endow. 13(4), 421–434 (2019).
[78]
Kim, W.H., Krishnan, R.M., Fu, X., Kashyap, S., Min, C.: Pactree: A high performance persistent range index using pac guidelines. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, pp. 424–439. ACM (2021).
[79]
Chen, Y., Lu, Y., Fang, K., Wang, Q., Shu, J.: Utree: A persistent b+-tree with low tail latency. Proc. VLDB Endow. 13(12), 2634–2648 (2020).
[80]
Kim WH, Seo J, Kim J, and Nam B Clfb-tree: cacheline friendly persistent b-tree for NVRAM ACM Trans. Storage 2018 14 1 1
[81]
Cha H, Nam M, Jin K, Seo J, and Nam B B3-tree: byte-addressable binary b-tree for persistent memory ACM Trans. Storage 2020 16 3 1
[82]
Wang Q, Lu Y, Li J, Xie M, and Shu J Nap: persistent memory indexes for numa architectures ACM Trans. Storage 2022 18 1 1
[83]
He, Y., Lu, D., Huang, K., Wang, T.: Evaluating persistent memory range indexes: Part two. Proc. VLDB Endow. 15(11), 2477–2490 (2022).
[84]
Kolli, A., Pelley, S., Saidi, A., Chen, P.M., Wenisch, T.F.: High-performance transactions for persistent memories. In: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16, pp. 399–411. ACM, Atlanta (2016).
[85]
Shin, S., Tuck, J., Solihin, Y.: Hiding the long latency of persist barriers using speculative execution. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pp. 175–186. ACM, Toronto (2017).
[86]
Wu, K., Ren, J., Peng, I., Li, D.: ArchTM: architecture-aware, high performance transaction for persistent memory. In: 19th USENIX Conference on File and Storage Technologies (FAST 21), pp. 141–153. USENIX Association (2021). https://www.usenix.org/conference/fast21/presentation/wu-kai
[87]
MongoDB: MongoDB (2020). https://www.mongodb.com
[88]
[89]
Memcached: Memcached. (2019). https://memcached.org
[90]
Facebook: RocksDB (2020). https://rocksdb.org
[91]
Google: LevelDB (2022). https://leveldb.org
[92]
Kaiyrakhmet, O., Lee, S., Nam, B., Noh, S.H., Choi, Y.R.: Slm-db: Single-level key-value store with persistent memory. In: Proceedings of the 17th USENIX Conference on File and Storage Technologies, FAST’19, pp. 191–204. USENIX, Boston (2019)
[93]
Lepers, B., Balmau, O., Gupta, K., Zwaenepoel, W.: Kvell: The design and implementation of a fast persistent key-value store. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pp. 447–461. ACM, Huntsville (2019).
[94]
Patil, S., Gibson, G.: Scale and concurrency of giga+: File system directories with millions of files. In: Proceedings of the 9th USENIX Conference on File and Stroage Technologies, FAST’11, pp. 177–190. USENIX, San Jose (2011)
[95]
Xu, S., Lee, S., Jun, S.W., Liu, M., Hicks, J., Arvind: Bluecache: A scalable distributed flash-based key-value store. Proc. VLDB Endow. 10(4), 301–312 (2016).
[97]
Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Technologies, pp. 19–es. USENIX, Monterey (2002)
[98]
Goel, A., Chopra, B., Gerea, C., Mátáni, D., Metzler, J., Ul Haq, F., Wiener, J.: Fast database restarts at facebook. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD’14, pp. 541–549. ACM, Snowbird (2014).
[99]
Marathe, V.J., Seltzer, M., Byan, S., Harris, T.: Persistent memcached: Bringing legacy code to byte-addressable persistent memory. In: Proceedings of the 9th USENIX Conference on Hot Topics in Storage and File Systems, HotStorage’17, p. 4. USENIX, Santa Clara (2017)
[100]
Xu, J., Swanson, S.: Nova: A log-structured file system for hybrid volatile/non-volatile main memories. In: Proceedings of the 14th Usenix Conference on File and Storage Technologies, FAST’16, pp. 323–338. USENIX, Santa Clara (2016)
[101]
Zhang, W., Zhao, X., Jiang, S., Jiang, H.: Chameleondb: A key-value store for optane persistent memory. In: Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21, p. 194-209. ACM, New York (2021).

Cited By

View all
  • (2024)Rethinking Hash Tables: Challenges and Opportunities with Compute Express Link (CXL)Proceedings of the ACM Turing Award Celebration Conference - China 202410.1145/3674399.3674418(23-27)Online publication date: 5-Jul-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 33, Issue 2
Mar 2024
305 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 09 September 2023
Accepted: 18 August 2023
Revision received: 15 June 2023
Received: 12 January 2023

Author Tags

  1. Persistent memory
  2. Non-volatile memory
  3. Hash table
  4. Hash index

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Rethinking Hash Tables: Challenges and Opportunities with Compute Express Link (CXL)Proceedings of the ACM Turing Award Celebration Conference - China 202410.1145/3674399.3674418(23-27)Online publication date: 5-Jul-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media