Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

Edge AI: A Taxonomy, Systematic Review and Future Directions

Published: 18 October 2024 Publication History

Abstract

Edge Artificial Intelligence (AI) incorporates a network of interconnected systems and devices that receive, cache, process, and analyse data in close communication with the location where the data is captured with AI technology. Recent advancements in AI efficiency, the widespread use of Internet of Things (IoT) devices, and the emergence of edge computing have unlocked the enormous scope of Edge AI. The goal of Edge AI is to optimize data processing efficiency and velocity while ensuring data confidentiality and integrity. Despite being a relatively new field of research, spanning from 2014 to the present, it has shown significant and rapid development over the last five years. In this article, we present a systematic literature review for Edge AI to discuss the existing research, recent advancements, and future research directions. We created a collaborative edge AI learning system for cloud and edge computing analysis, including an in-depth study of the architectures that facilitate this mechanism. The taxonomy for Edge AI facilitates the classification and configuration of Edge AI systems while also examining its potential influence across many fields through compassing infrastructure, cloud computing, fog computing, services, use cases, ML and deep learning, and resource management. This study highlights the significance of Edge AI in processing real-time data at the edge of the network. Additionally, it emphasizes the research challenges encountered by Edge AI systems, including constraints on resources, vulnerabilities to security threats, and problems with scalability. Finally, this study highlights the potential future research directions that aim to address the current limitations of Edge AI by providing innovative solutions.

References

[1]
Walia GK, Kumar M, and Gill SS Ai-empowered fog/edge resource management for iot applications: a comprehensive review, research challenges, and future perspectives IEEE Commun. Surv. Tutor. 2024 26 1 619-669
[2]
Ding AY, Peltonen E, Meuser T, et al. Roadmap for edge ai: A dagstuhl perspective ACM SIGCOMM Comput. Commun. Rev. 2022 52 28-33
[3]
Golec, M., Gill, S.S.: Computing: Looking back and moving forward. In: Proceedings of the 21st International Conference on Smart Business Technologies (ICSBT 2024), pp. 7–14, (2024)
[4]
Iftikhar S, Gill SS, Song C, Xu M, Aslanpour MS, Toosi AN, Du J, Wu H, Ghosh S, Chowdhury D, et al. Ai-based fog and edge computing: a systematic review, taxonomy and future directions Internet Things 2023 21 100674
[5]
Duan, Q., Huang, J., Hu, S., Deng, R., Lu, Z., Yu, S.: Combining federated learning and edge computing toward ubiquitous intelligence in 6g network: Challenges, recent advances, and future directions. IEEE Commun. Surv. Tutor. (2023)
[6]
Singh R and Gill SS Edge ai: a survey Internet Things Cyber Phys. Syst. 2023 3 71-92
[7]
Shi Y, Yang K, Jiang T, Zhang J, and Letaief KB Communication-efficient edge ai: algorithms and systems IEEE Commun. Surv. Tutor. 2020 22 4 2167-2191
[8]
Liu D, Kong H, Luo X, Liu W, and Subramaniam R Bringing ai to edge: from deep learning’s perspective Neurocomputing 2022 485 297-320
[9]
Rocha A, Monteiro M, et al. Edge ai for internet of medical things: a literature review Comput. Electr. Eng. 2024 116 109202
[10]
Su W, Li L, Liu F, He M, and Liang X Ai on the edge: a comprehensive review Artif. Intell. Rev. 2022 55 8 6125-6183
[11]
Zhang W, Zeadally S, Li W, Zhang H, Hou J, and Leung VCM Edge ai as a service: configurable model deployment and delay-energy optimization with result quality constraints IEEE Trans. Cloud Comput. 2023 11 2 1954-1969
[12]
Qureshi, H.N., Masood, U., Manalastas, M., Zaidi, S.M.A., Farooq, H., Forgeat, J., Bouton, M., Bothe, S., Karlsson, P., Rizwan, A., et al.: Towards addressing training data scarcity challenge in emerging radio access networks: a survey and framework. IEEE Commun. Surv. Tutor. (2023)
[13]
Golec M, Iftikhar S, Prabhakaran P, Gill SS, and Uhlig S Qos analysis for serverless computing using machine learning Serverless Computing: Principles and Paradigms 2023 New York Springer 175-192
[14]
Shahriar S, Allana S, Hazratifard SM, and Dara R A survey of privacy risks and mitigation strategies in the artificial intelligence life cycle IEEE Access 2023 11 61829-61854
[15]
Kumar, M., Walia, G.K., Shingare, H., Singh, S., Gill, S.S.: Ai-based sustainable and intelligent offloading framework for iiot in collaborative cloud-fog environments. IEEE Trans. Consum. Electr. (2023)
[16]
Hoffpauir K, Simmons J, Schmidt N, Pittala R, Briggs I, Makani S, and Jararweh Y A survey on edge intelligence and lightweight machine learning support for future applications and services ACM J. Data Inf. Qual. 2023 15 2 1-30
[17]
Gill SS and Buyya R Transforming research with quantum computing J. Economy Technol. 2024 2 1-11
[18]
Huang, N., Dou, C., Wu, Y., Qian, L., Lu, R.: Energy-efficient integrated sensing and communication: a multi-access edge computing design. IEEE Wireless Commun Lett. (2023)
[19]
Verma, P., Sood, S.K., Kaur, H., Kumar, M., Wu, H., Gill, S.S.: Data driven stochastic game network-based smart home monitoring system using iot-enabled edge computing environments. IEEE Trans. Consum. Electr. (2024)
[20]
Gill SS, Wu H, Patros P, Ottaviani C, Arora P, Pujol VC, Haunschild D, Parlikad AK, Cetinkaya O, Lutfiyya H, et al. Modern computing: vision and challenges Telemat. Inform. Rep. 2024 13 100116
[21]
Velu S, Gill SS, Murugesan SS, Wu H, and Li X Cloudaibus: a testbed for ai based cloud computing environments Cluster Comput. 2024
[22]
Golec M, Gill SS, Bahsoon R, and Rana O Biosec: a biometric authentication framework for secure and private communication among edge devices in iot and industry 4.0 IEEE Consum. Electr. Magazine 2020 11 2 51-56
[23]
Golec, M., Gill, S.S., Cuadrado, F., Parlikad, A.K., Xu, M., Wu, H., Uhlig, S.: Atom: Ai-powered sustainable resource management for serverless edge computing environments. IEEE Trans. Sustain. Comput. (2023)
[24]
Golec M, Ozturac R, Pooranian Z, Gill SS, and Buyya R Ifaasbus: a security-and privacy-based lightweight framework for serverless computing using iot and machine learning IEEE Trans. Industr. Inform. 2021 18 5 3522-3529
[25]
Golec, M., Gill, S.S., Parlikad, A.K., Uhlig, S.: Healthfaas: Ai based smart healthcare system for heart patients using serverless computing. IEEE Int. Things J. (2023)
[26]
Peter N Fog computing and its real time applications Int. J. Emerg. Technol. Adv. Eng 2015 5 6 266-269
[27]
Iftikhar, S., Golec, M., Chowdhury, D., Gill, S.S., Uhlig, S., Fog computing based router-distributor application for sustainable smart home. In: IEEE 95th Vehicular Technology Conference:(VTC2022-Spring). IEEE 2022, pp. 1–5 (2022)
[28]
Golec, M., Golec, M., Xu, M., Wu, H., Gill, S.S., Uhlig, S.: Priceless: Privacy enhanced ai-driven scalable framework for iot applications in serverless edge computing environments. Int. Technol. Lett., p. e510, (2024)
[29]
Golec, M., Gill, S.S., Wu, H., Can, T.C., Golec, M., Cetinkaya, O., Cuadrado, F., Parlikad, A. K., Uhlig, S.: Master: Machine learning-based cold start latency prediction framework in serverless edge computing environments for industry 4.0. IEEE J. Select. Areas Sens. (2024)
[30]
Gill SS A manifesto for modern fog and edge computing: Vision, new paradigms, opportunities, and future directions Operationalizing Multi-Cloud Environments: Technologies 2021 New York Tools and Use Cases. Springer 237-253
[31]
Nandhakumar AR, Baranwal A, Choudhary P, Golec M, and Gill SS Edgeaisim: a toolkit for simulation and modelling of ai models in edge computing environments Measurement Sens. 2024 31 100939
[32]
Golec, M., Chowdhury, D., Jaglan, S., Gill, S.S., Uhlig, S.: Aiblock: Blockchain based lightweight framework for serverless computing using ai. In: 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE 2022, pp. 886–892 (2022)
[33]
Lee CP, Leng FTJ, Habeeb RAA, Amanullah MA, and ur Rehman MH Edge computing-enabled secure and energy-efficient smart parking: a review Microprocess. Microsy. 2022 93 104612
[34]
Patrikar DR and Parate MR Anomaly detection using edge computing in video surveillance system Int. J. Multimed. Inf. Retr. 2022 11 2 85-110
[35]
Wu L, Zhang R, Zhou R, and Wu D An edge computing based data detection scheme for traffic light at intersections Comput. Commun. 2021 176 91-98
[36]
Liu Y Open university Chinese language and literature teaching model based on nlp technology and mobile edge computing Mobile Inf. Syst. 2022 2022 1 4149492
[37]
Barekar, P.V., Singh, K.R.: Object detection and tracking approach for traffic monitoring. In: International Conference on Smart Computing and Communication. Springer, pp. 25–33 (2024)
[38]
Golec M, Gill SS, Golec M, Xu M, Ghosh SK, Kanhere SS, Rana O, and Uhlig S Blockfaas: blockchain-enabled serverless computing framework for ai-driven iot healthcare applications J. Grid Comput. 2023 21 4 63
[39]
Cao K, Liu Y, Meng G, and Sun Q An overview on edge computing research IEEE access 2020 8 85 714-85 728
[40]
Dolati M, Rastegar SH, Khonsari A, and Ghaderi M Layer-aware containerized service orchestration in edge networks IEEE Trans. Network Serv. Manage. 2022 20 2 1830-1846
[41]
Satyanarayanan M The emergence of edge computing Computer 2017 50 1 30-39
[42]
Larsson M Hands-on Microservices with spring boot and spring cloud: build and deploy Java microservices using spring cloud, Istio, and Kubernetes 2019 Birmingham Packt Publishing Ltd
[43]
Xu X, Huang Q, Yin X, Abbasi M, Khosravi MR, and Qi L Intelligent offloading for collaborative smart city services in edge computing IEEE Int. Things J. 2020 7 9 7919-7927
[44]
Huang, H., Peng, K., Xu, X., Collaborative computation offloading for smart cities in mobile edge computing. In: IEEE 13th International conference on cloud computing (CLOUD). IEEE 2020, 176–183 (2020)
[45]
Li C, Wang H, and Song R Intelligent offloading for noma-assisted mec via dual connectivity IEEE Int. Things J. 2020 8 4 2802-2813
[46]
Zhang, Y., Liu, X., Xu, J., Yuan, D., Li, X., A novel adaptive computation offloading strategy for collaborative dnn inference over edge devices. In: IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE 2022, pp. 378–385 (2022)
[47]
Fresa, A., Champati, J.P.V.: An offloading algorithm for maximizing inference accuracy on edge device in an edge intelligence system. In: Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 15–23 (2022)
[48]
Khan I, Raza S, Rehman WU, Khan R, Nahida K, and Tao X A deep learning-based algorithm for energy and performance optimization of computational offloading in mobile edge computing Wireless Commun. Mobile Comput. 2023 2023 1 1357343
[49]
Du M, Wang Y, Ye K, and Xu C Algorithmics of cost-driven computation offloading in the edge-cloud environment IEEE Trans. Comput. 2020 69 10 1519-1532
[50]
Choudhury AS, Halder T, Basak A, and Chakravarty D Implementation of artificial intelligence (ai) in smart manufacturing: a status review International Conference on Computational Intelligence and Smart Communication 2022 New York Springer 73-85
[51]
Plathottam SJ, Rzonca A, Lakhnori R, and Iloeje CO A review of artificial intelligence applications in manufacturing operations J. Adv. Manufact. Process. 2023 5 3 e10159
[52]
Yang C, Lan S, Wang L, Shen W, and Huang GG Big data driven edge-cloud collaboration architecture for cloud manufacturing: a software defined perspective IEEE Access 2020 8 45938-45950
[53]
Moon, J., Jeong, J., Smart manufacturing scheduling system: Dqn based on cooperative edge computing. In: 15th international conference on ubiquitous information management and communication (IMCOM). IEEE 2021, pp. 1–8 (2021)
[54]
Mishra, I., Kumar, S., Gupta, N.: Smart manufacturing: opportunities and challenges overcome by industry 4.0. Soft Computing in Materials Development and its Sustainability in the Manufacturing Sector, pp. 179–182 (2022)
[55]
Zhang Y, Tang D, Zhu H, Zhou S, and Zhao Z An efficient iiot gateway for cloud-edge collaboration in cloud manufacturing Machines 2022 10 10 850
[56]
Mohanram, P., Gilerson, A., Schmitt, R., et al.: Architecture for edge-based predictive maintenance of machines using federated learning and multi sensor platforms. (2023)
[57]
Rizk H, Chaibet A, and Kribèche A Model-based control and model-free control techniques for autonomous vehicles: a technical survey Appl. Sci. 2023 13 11 6700
[58]
Ning Z, Hu H, Wang X, Guo L, Guo S, Wang G, and Gao X Mobile edge computing and machine learning in the internet of unmanned aerial vehicles: a survey ACM Comput. Surv. 2023 56 1 1-31
[59]
Ahmed, M., Mirza, M.A., Raza, S., Ahmad, H., Xu, F., Khan, W.U., Lin, Q., Han, Z.: Vehicular communication network enabled cav data offloading: a review. IEEE Trans. Intell. Trans. Syst. (2023)
[60]
Xue D, Guo Y, Li N, Song X, and Zhang L Cross-domain coordination of resource allocation and route planning for the edge computing-enabled multi-connected vehicles J. Cloud Comput. 2023 12 1 33
[61]
Ming G Exploration of the intelligent control system of autonomous vehicles based on edge computing PLoS One 2023 18 2 e0281294
[62]
Firdaus M and Rhee K-H Firdaus M A joint framework to privacy-preserving edge intelligence in vehicular networks Int. Conf. Inform. Security Appl. 2022 New York Springer 156-167
[63]
Atan B, Basaran M, Calik N, Basaran ST, Akkuzu G, and Durak-Ata L Ai-empowered fast task execution decision for delay-sensitive iot applications in edge computing networks IEEE Access 2022 11 1324-1334
[64]
Anees T, Habib Q, Al-Shamayleh AS, Khalil W, Obaidat MA, and Akhunzada A The integration of wot and edge computing: issues and challenges Sustainability 2023 15 7 5983
[65]
Ajibuwa, O., Hamdaoui, B., Yavuz, A.A.: A survey on ai/ml-driven intrusion and misbehavior detection in networked autonomous systems: techniques, challenges and opportunities. arXiv preprint arXiv:2305.05040, (2023)
[66]
Verma P and Sood SK Fog assisted-iot enabled patient health monitoring in smart homes IEEE Int. Things J. 2018 5 3 1789-1796
[67]
Shaikh TA, Rasool T, and Verma P Machine intelligence and medical cyber-physical system architectures for smart healthcare: taxonomy, challenges, opportunities, and possible solutions Artif. Intell. Med. 2023 146 102692
[68]
Ahmed, S.T., Basha, S.M., Ramachandran, M., Daneshmand, M., Gandomi, A.H.: An edge-ai enabled autonomous connected ambulance route resource recommendation protocol (aca-r3) for ehealth in smart cities. IEEE Int. Things J. (2023)
[69]
Misra, S., Pal, S., Deb, P.K., Gupta, E.: Kedge: Fuzzy-based multi-ai model coalescence solution for mobile healthcare system. IEEE Syst. J. (2023)
[70]
Chakraborty, C., Nagarajan, S.M., Devarajan, G.G., Ramana, T., Mohanty, R.: Intelligent ai-based healthcare cyber security system using multi-source transfer learning method. ACM Trans. Sens. Netw. (2023)
[71]
Dvijotham K, Winkens J, Barsbey M, Ghaisas S, Stanforth R, Pawlowski N, Strachan P, Ahmed Z, Azizi S, Bachrach Y, et al. Enhancing the reliability and accuracy of ai-enabled diagnosis via complementarity-driven deferral to clinicians Nat. Med. 2023 29 7 1814-1820
[72]
Keele, S., et al.: Guidelines for performing systematic literature reviews in software engineering. Tech. Rep, Citeseer (2007)
[73]
Kitchenham, B.A.: Systematic review in software engineering: where we are and where we should be going. In: Proceedings of the 2nd international workshop on Evidential assessment of software technologies, pp. 1–2 (2012)
[74]
Brereton P, Kitchenham BA, Budgen D, Turner M, and Khalil M Lessons from applying the systematic literature review process within the software engineering domain J. Syst. Softw. 2007 80 4 571-583
[75]
Tawfik GM, Dila KAS, Mohamed MYF, Tam DNH, Kien ND, Ahmed AM, and Huy NT A step by step guide for conducting a systematic review and meta-analysis with simulation data Trop Med Health 2019 47 1-9
[76]
Singh SP, Sharma A, and Kumar R Design and exploration of load balancers for fog computing using fuzzy logic Simul Model Pract Theory 2020 101 102017
[77]
Gos, K., Zabierowski, W.: The comparison of microservice and monolithic architecture. In: 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, pp. 150–153, (2020)
[78]
Errasti-Alcala B and Fernandez-Recio R Meta-heuristic approach for single-snapshot 2d-doa and frequency estimation: Array topologies and performance analysis [wireless corner] IEEE Antenn Propag Magazine 2013 55 1 222-238
[79]
Himeur, Y., Sayed, A., Alsalemi, A., Bensaali, F., Amira, A.: Edge ai for internet of energy: Challenges and perspectives. ArXiv, vol. arXiv:abs/2311.16851, (2023)
[80]
Gill SS Quantum and blockchain based serverless edge computing: a vision, model, new trends and future directions Int. Technol. Lett. 2024 7 1 e275
[81]
Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M, Stankovski V, Wu H, Abraham A, et al. Ai for next generation computing: Emerging trends and future directions Internet Things 2022 19 100514
[82]
Sharif Z, Jung LT, Ayaz M, Yahya M, and Pitafi S Priority-based task scheduling and resource allocation in edge computing for health monitoring system J. King Saud Univ. Comput. Inform. Sci. 2023 35 2 544-559
[83]
Zhuang Z, Li Y, Sun Y, Qin W, and Sun Z-H Network-based dynamic dispatching rule generation mechanism for real-time production scheduling problems with dynamic job arrivals Robot. Comput. Integr. Manuf. 2022 73 102261
[84]
Singh H, Tyagi S, Kumar P, Gill SS, and Buyya R Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: analysis, performance evaluation, and future directions Simul. Model. Pract. Theory 2021 111 102353
[85]
Desai F, Chowdhury D, Kaur R, Peeters M, Arya RC, Wander GS, Gill SS, and Buyya R Healthcloud: a system for monitoring health status of heart patients using machine learning and cloud computing Internet Things 2022 17 100485
[86]
Sheng S, Chen P, Chen Z, Wu L, and Yao Y Deep reinforcement learning-based task scheduling in iot edge computing Sensors 2021 21 5 1666
[87]
Kiran BR, Sobh I, Talpaert V, Mannion P, Al Sallab AA, Yogamani S, and Pérez P Deep reinforcement learning for autonomous driving: a survey IEEE Trans. Intell. Trans. Syst. 2021 23 6 4909-4926
[88]
Zhong Z, Xu M, Rodriguez MA, Xu C, and Buyya R Machine learning-based orchestration of containers: a taxonomy and future directions ACM Comput. Surv. (CSUR) 2022 54 10s 1-35
[89]
Iftikhar, S., Raj, U., Tuli, S., Golec, M., Chowdhury, D., Gill, S.S., Uhlig, S., Tesco: Multiple simulations based ai-augmented fog computing for qos optimization. In: IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). IEEE 2022, 2092–2099 (2022)
[90]
Nayeri ZM, Ghafarian T, and Javadi B Application placement in fog computing with ai approach: taxonomy and a state of the art survey J. Netw. Comput. Appl. 2021 185 103078
[91]
Carvalho, O., Garcia, M., Roloff, E., Carreño, E.D., Navaux, P.O.: Iot workload distribution impact between edge and cloud computing in a smart grid application. In: High Performance Computing: 4th Latin American Conference, CARLA,: Buenos Aires, Argentina, and Colonia del Sacramento, Uruguay, September 20–22, 2017, Revised Selected Papers 4. Springer 2018, 203–217 (2017)
[92]
Nguyen, C., Klein, C., Elmroth, E.: Multivariate lstm-based location-aware workload prediction for edge data centers. In: 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE 2019, 341–350 (2019)
[93]
Winters PR Forecasting sales by exponentially weighted moving averages Manag. Sci. 1960 6 3 324-342
[94]
Qiao, Y., Munir, M.S., Adhikary, A., Raha, A.D., Hong, S.H., Hong, C.S.: A framework for multi-prototype based federated learning: Towards the edge intelligence. In: 2023 International Conference on Information Networking (ICOIN). IEEE, pp. 134–139 (2023)
[95]
Briouya A, Briouya H, and Choukri A Overview of the progression of state-of-the-art language models TELKOMNIKA (Telecommunication Computing Electronics and Control) 2024 22 4 897-909
[96]
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708 (2017)
[97]
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning. PMLR, pp. 6105–6114 (2019)
[98]
Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International conference on machine learning. PMLR, pp. 10096–10106 (2021)
[99]
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, (2017)
[100]
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6848–6856 (2018)
[101]
Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al. Language models are few-shot learners Adv. Neural Inf. Process. Syst. 2020 33 1877-1901
[102]
Xiong, Y., Sun, Y., Xing, L., Huang, Y.: Extend cloud to edge with kubeedge. In: IEEE/ACM Symposium On Edge Computing (SEC). IEEE 2018, pp. 373–377 (2018)
[103]
Singh P, Kaur A, and Gill SS Machine learning for cloud, fog, edge and serverless computing environments: comparisons, performance evaluation benchmark and future directions Int. J. Grid Utility Comput. 2022 13 4 447-457
[104]
You Y, Zhang Z, Hsieh C-J, Demmel J, and Keutzer K Fast deep neural network training on distributed systems and cloud tpus IEEE Trans. Parallel Distribut. Syst. 2019 30 11 2449-2462
[105]
Sun, Y., Kist, A.M.: Deep learning on edge tpus. arXiv preprint arXiv:2108.13732, (2021)
[106]
Casalicchio E and Iannucci S The state-of-the-art in container technologies: application, orchestration and security Concurr. Comput. Pract. Exp. 2020 32 17 e5668
[107]
Zhang J, Lu C, Cheng G, Guo T, Kang J, Zhang X, Yuan X, and Yan X A blockchain-based trusted edge platform in edge computing environment Sensors 2021 21 6 2126
[108]
Wang T, Zhang G, Liu A, Bhuiyan MZA, and Jin Q A secure iot service architecture with an efficient balance dynamics based on cloud and edge computing IEEE Int. Things J. 2018 6 3 4831-4843
[109]
Gharaibeh A, Salahuddin MA, Hussini SJ, Khreishah A, Khalil I, Guizani M, and Al-Fuqaha A Smart cities: a survey on data management, security, and enabling technologies IEEE Commun. Surv. Tutor. 2017 19 4 2456-2501
[110]
Krebs, B.: Krebsonsecurity hit with record ddos. Available: https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-recordddos/ (2016). Accessed 15 Jun 2024 [Online]
[111]
Dyn, Dyn analysis summary of friday october 21 attack. Available: http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21attack/ (2016). Accessed 15 Jun 2024 [Online]
[112]
Bhardwaj, K., Miranda, J.C., Gavrilovska, A.: Towards IoT-DDoS prevention using edge computing. In: USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18). Boston, MA: USENIX Association. [Online]. Available: https://www.usenix.org/conference/hotedge18/presentation/bhardwaj(2018)
[113]
Oleghe O Container placement and migration in edge computing: concept and scheduling models IEEE Access 2021 9 68028-68043
[114]
Li Z, Yang Z, Xie S, Chen W, and Liu K Credit-based payments for fast computing resource trading in edge-assisted internet of things IEEE Int. Things J. 2019 6 4 6606-6617
[115]
Zhang X, Zhong Y, Liu P, Zhou F, and Wang Y Resource allocation for a uav-enabled mobile-edge computing system: computation efficiency maximization IEEE Access 2019 7 113 345-113 354
[116]
Tran TX and Pompili D Joint task offloading and resource allocation for multi-server mobile-edge computing networks IEEE Trans. Vehicular Technol. 2018 68 1 856-868
[117]
Wei Y, Pan L, Liu S, Wu L, and Meng X Drl-scheduling: an intelligent qos-aware job scheduling framework for applications in clouds IEEE Access 2018 6 55112-55125
[118]
Carrión C Kubernetes scheduling: taxonomy, ongoing issues and challenges ACM Comput. Surv. 2022 55 7 1-37
[119]
Junior, P.S., Miorandi, D., Pierre, G.: Stateful container migration in geo-distributed environments. In: IEEE international conference on cloud computing technology and science (CloudCom). IEEE 2020, pp. 49–56 (2020)
[120]
Murugesan, S.S., Velu, S., Golec, M., Wu, H., Gill, S.S.: Neural networks based smart e-health application for the prediction of tuberculosis using serverless computing. IEEE J. Biomed. Health Inform., pp. 1–12, (2024)
[121]
Amin R, Vadlamudi S, and Rahaman MM Opportunities and challenges of data migration in cloud Eng. Int. 2021 9 1 41-50
[122]
Chiang M and Zhang T Fog and iot: an overview of research opportunities IEEE Int. Things J. 2016 3 6 854-864
[123]
Iftikhar, S., Golec, M., Chowdhury, D., Gill, S.S., Uhlig, S.: Fogdlearner: a deep learning-based cardiac health diagnosis framework using fog computing. In: Proceedings of the 2022 Australasian Computer Science Week, pp. 136–144 (2022)
[124]
Imdoukh M, Ahmad I, and Alfailakawi MG Machine learning-based auto-scaling for containerized applications Neural Comput. Appl. 2020 32 13 9745-9760
[125]
The Prometheus Authors, Prometheus - monitoring system & time series database. https://prometheus.io/ (2024). Accessed 20 Jun 2024
[126]
Klinaku, F., Frank, M., Becker, S.: Caus: an elasticity controller for a containerized microservice. In: Companion of the. ACM/SPEC International Conference on Performance Engineering 2018, pp. 93–98 (2018)
[127]
Ali AH A survey on vertical and horizontal scaling platforms for big data analytics Int. J. Integr. Eng. 2019 11 6 138-150
[128]
Nguyen T-T, Yeom Y-J, Kim T, Park D-H, and Kim S Horizontal pod autoscaling in kubernetes for elastic container orchestration Sensors 2020 20 16 4621
[129]
Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-based applications using reinforcement learning. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, pp. 329–338 (2019)
[130]
Hu, H., Jiang, C.: Edge intelligence: Challenges and opportunities. In: 2020 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5 (2020)
[131]
Dai C and Song Q Heuristic computing methods for contact plan design in the spatial-node-based internet of everything China Commun. 2019 16 3 53-68
[132]
Mattmann, C.: Machine learning with tensorflow. Simon and Schuster (2020)
[133]
Kaloev, M., Krastev, G.: Experiments focused on exploration in deep reinforcement learning. In: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 351–355 (2021)
[134]
Hong C-H and Varghese B Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms ACM Comput. Surv. (CSUR) 2019 52 5 1-37
[135]
Ebrahimi, M., Veith, A.d.S., Gabel, M., de Lara, E.: Combining dnn partitioning and early exit. In: Proceedings of the 5th International Workshop on Edge Systems, Analytics and Networking, pp. 25–30 (2022)
[136]
Kang Y, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, and Tang L Neurosurgeon: collaborative intelligence between the cloud and mobile edge ACM SIGARCH Comput. Arch. News 2017 45 1 615-629
[137]
Liang, C., Zuo, S., Chen, M., Jiang, H., Liu, X., He, P., Zhao, T., Chen, W.: Super tickets in pre-trained language models: from model compression to improving generalization. arXiv preprint arXiv:2105.12002, (2021)
[138]
Sanaei Z, Abolfazli S, Gani A, and Buyya R Heterogeneity in mobile cloud computing: taxonomy and open challenges IEEE Commun. Surv. Tutor. 2013 16 1 369-392
[139]
Marin G Network security basics IEEE Secur. Priv. 2005 3 6 68-72
[140]
Puliafito C, Vallati C, Mingozzi E, Merlino G, Longo F, and Puliafito A Container migration in the fog: a performance evaluation Sensors 2019 19 7 1488
[141]
Singh G and Singh P A taxonomy and survey on container migration techniques in cloud computing Sustain. Dev. Through Eng. Innov. Select Proc. SDEI 2021 2020 419-429
[142]
Kristiani, E., Yang, C.-T., Nguyen, K.L.P.: Optimization of deep learning inference on edge devices. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), pp. 264–267, (2020)
[143]
Saha, S., Banerjee, K., Ghosh, S., Mitra, S., Pal, D.: Ai-driven edge computing for iot: a comprehensive survey and future directions. Int J Adv Res Sci Commun Technol (2023)
[144]
Liang Q, Hanafy WA, Ali-Eldin A, and Shenoy P Model-driven cluster resource management for ai workloads in edge clouds ACM Trans. Auton. Adap. Syst. 2022 18 1-26
[145]
Shi Y, Yang K, Jiang T, Zhang J, and Letaief K Communication-efficient edge ai: Algorithms and systems IEEE Commun. Surv. Tutor. 2020 22 2167-2191
[146]
Zou X, Li K, Zhou JT, Wei W, and Chen C Robust edge ai for real-time industry 4.0 applications in 5g environment IEEE Commun. Stand. Magazine 2023 7 2 64-70
[147]
Du, J., Xu, M., Gill, S.S., Wu, H.: Computation energy efficiency maximization for intelligent reflective surface-aided wireless powered mobile edge computing. IEEE Trans. Sustain. Comput. (2023)
[148]
Johnson D, Chen G, and Lu Y Multi-agent reinforcement learning for real-time dynamic production scheduling in a robot assembly cell IEEE Robot. Autom. Lett. 2022 7 7684-7691
[149]
Dong T, Xue F, Xiao C, and Li J Task scheduling based on deep reinforcement learning in a cloud manufacturing environment Concurr. Comput. Pract. Exp. 2020 32 e5654
[150]
Chhabra A, Singh G, and Kahlon K Multi-criteria hpc task scheduling on iaas cloud infrastructures using meta-heuristics Cluster Comput. 2020 24 885-918
[151]
Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Energy-aware scheduling of multi-version tasks on heterogeneous real-time systems. Proceedings of the 36th Annual ACM Symposium on Applied Computing (2021)
[152]
Yousef LA, Yousef H, and Rocha-Meneses L Artificial intelligence for management of variable renewable energy systems: a review of current status and future directions Energies 2023 16 24 8057
[153]
Chowdhury D, Das A, Dey A, Banerjee S, Golec M, Kollias D, Kumar M, Kaur G, Kaur R, Arya RC, et al. Covidetector: a transfer learning-based semi supervised approach to detect covid-19 using cxr images BenchCouncil Trans. Benchmarks Stand. Eval. 2023 3 2 100119
[154]
Wang Y, Dong S, and Fan W Task scheduling mechanism based on reinforcement learning in cloud computing Mathematics 2023 11 15 3364
[155]
Zhu S, Ota K, and Dong M Energy-efficient artificial intelligence of things with intelligent edge IEEE Int. Things J. 2022 9 10 7525-7532
[156]
Doyle J, Golec M, and Gill SS Blockchainbus: a lightweight framework for secure virtual machine migration in cloud federations using blockchain Secur. Priv. 2022 5 2 e197
[157]
Singh R and Gill SS Next generation edge computing: a roadmap to net zero emissions J. Econ. Technol. 2023 1 208-221
[158]
Vermesan, O., Coppola, M., Bahr, R., Bellmann, R.O., Martinsen, J.E., Kristoffersen, A., Hjertaker, T., Breiland, J., Andersen, K., Sand, H.-E., Lindberg, D.: An intelligent real-time edge processing maintenance system for industrial manufacturing, control, and diagnostic. [Online]. Available: https://api.semanticscholar.org/CorpusID:250150289 (2022)
[159]
Kovalenko I, Barton K, Moyne J, and Tilbury DM Opportunities and challenges to integrate artificial intelligence into manufacturing systems: thoughts from a panel discussion [opinion] IEEE Robot. Autom. Magazine 2023 30 2 109-112
[160]
Cinar Z, Nuhu AA, Zeeshan Q, Korhan O, Asmael M, and Safaei B Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0 Sustainability 2020 12 19 8211
[161]
Chien C, Dauzére-Pérés S, Huh WT, Jang Y, and Morrison JR Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies Int. J. Prod. Res. 2020 58 2730-2731
[162]
Ying, J., Hsieh, J., Hou, D., Hou, J., Liu, T., Zhang, X., Wang, Y., Pan, Y.-T.: Edge-enabled cloud computing management platform for smart manufacturing. 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0 &IoT), pp. 682–686, (2021)
[163]
Nain G, Pattanaik K, and Sharma G Towards edge computing in intelligent manufacturing: past, present and future J. Manuf. Syst. 2022 62 588-611
[164]
Ringler, N., Knittel, D., Ponsart, J., Nouari, M., Yakob, A., Romani, D.: Machine learning based real time predictive maintenance at the edge for manufacturing systems: a practical example. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), pp. 1–6, (2023)
[165]
Pule M, Matsebe O, and Samikannu R (2022) Application of pca and svm in fault detection and diagnosis of bearings with varying speed Math. Probl. Eng. 2022 1 5266054
[166]
Yu W, Dillon T, Mostafa F, Rahayu W, and Liu Y A global manufacturing big data ecosystem for fault detection in predictive maintenance IEEE Trans. Industr. Inform. 2020 16 183-192
[167]
Thalluri, L.N., Venkat, S.N., Prasad, C.V.V.D., Kumar, D.V., Kumar, K.P., Sarma, A.V.N., Adapa, S.D.: Artificial intelligence enabled smart city iot system using edge computing. In: 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). IEEE, pp. 12–20, (2021)
[168]
Cojbasic S, Dmitrasinovic S, Kostic M, Sekulić MT, Radonić J, Dodig A, and Stojkovic M Application of machine learning in river water quality management: a review Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2023 88 9 2297-2308
[169]
Wang H, Yuan Y, Yang X, Zhao T, and Liu Y Deep q learning-based traffic signal control algorithms: model development and evaluation with field data J. Intell. Trans. Syst. 2022 27 314-334
[170]
Wang, S., Wang, S.: A novel multi-agent deep rl approach for traffic signal control. 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), pp. 15–20, (2023)
[171]
Ferraz, O., Araujo, H., Silva, V., Fernandes, G.F.P.: Benchmarking convolutional neural network inference on low-power edge devices. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, (2023)
[172]
Marini R, Mikhaylov K, Pasolini G, and Buratti C Low-power wide-area networks: comparison of lorawan and nb-iot performance IEEE Int. Things J. 2022 9 21051-21063
[173]
Nguyen DC, Ding M, Pham VQ, Pathirana P, Bao L, Aruna L, Seneviratne J, Li D, Niyato FIHV, Poor LFI, Le L, Li J, and Niyato D Federated learning meets blockchain in edge computing: opportunities and challenges IEEE Int. Things J. 2021 8 12 806-12 825
[174]
Adiwijaya, J., Tanaya, V.R., Anderies, Chowanda, A.: Federated learning and differential privacy in ai-based surveillance systems model. 2023 14th International Conference on Information & Communication Technology and System (ICTS), pp. 283–288, (2023)
[175]
Mutalemwa L and Shin S A classification of the enabling techniques for low latency and reliable communications in 5g and beyond: Ai-enabled edge caching IEEE Access 2020 8 205 502-205 533
[176]
Antevski K, Girletti L, Bernardos C, de la Oliva A, Baranda J, and Mangues-Bafalluy J A 5g-based ehealth monitoring and emergency response system: experience and lessons learned IEEE Access 2021 9 131420-131429
[177]
Adhikari M and Hazra A 6g-enabled ultra-reliable low-latency communication in edge networks IEEE Commun. Stand. Magazine 2022 6 67-74
[178]
Guo, X., Hong, X.: Dqn for smart transportation supporting v2v mobile edge computing. 2023 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 204–206, (2023)
[179]
Liu, X.-Y., Zhu, M., Borst, S., Elwalid, A.: Deep reinforcement learning for traffic light control in intelligent transportation systems. ArXiv, vol. arXiv:abs/2302.03669, (2023)
[180]
Guo, X., Hong, X.: Dqn for smart transportation supporting v2v mobile edge computing. In: 2023 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, pp. 204–206 (2023)
[181]
Cheng W, Liu X, Wang X, and Nie G Task offloading and resource allocation for industrial internet of things: a double-dueling deep q-network approach IEEE Access 2022 10 103 111-103 120
[182]
Seid AM, Boateng GO, Mareri B, Sun G, and Jiang W Multi-agent drl for task offloading and resource allocation in multi-uav enabled iot edge network IEEE Trans. Netw. Serv. Manage. 2021 18 4531-4547
[183]
Peng, X., Gao, H., Han, G., Wang, H., Zhang, M.: Joint optimization of traffic signal control and vehicle routing in signalized road networks using multi-agent deep reinforcement learning. ArXiv, vol. arXiv:abs/2310.10856, (2023)
[184]
Gao, L., Gu, Z., Qiu, C., Lei, L., Li, S., Zheng, S., Jing, W., Chen, J.: Cola-hrl: Continuous-lattice hierarchical reinforcement learning for autonomous driving. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 13143–13150, (2022)
[185]
Dai, J., Gluzman, M.O.: Queueing network controls via deep reinforcement learning. ArXiv, vol. arXiv:abs/2008.01644, (2020)
[186]
Baller, S.P., Jindal, A., Chadha, M., Gerndt, M.: Deepedgebench: benchmarking deep neural networks on edge devices. 2021 IEEE International Conference on Cloud Engineering (IC2E), pp. 20–30, (2021)
[187]
Pan Q, Wu J, Nebhen J, Bashir A, Su Y, and Li J Artificial intelligence-based energy efficient communication system for intelligent reflecting surface-driven vanets IEEE Trans. Intell. Trans. Syst. 2022 23 19 714-19 726
[188]
Golec, M., Walia, G.K., Kumar, M., Cuadrado, F., Gill, S.S., Uhlig, S.: Cold start latency in serverless computing: a systematic review, taxonomy, and future directions. arXiv preprint arXiv:2310.08437, (2023)
[189]
Eapen, B., Sartipi, K., Archer, N.: Serverless on fhir: deploying machine learning models for healthcare on the cloud. ArXiv, vol. arXiv:abs/2006.04748, (2020)
[190]
Solaiman, K., Adnan, M.A.: Wlec: A not so cold architecture to mitigate cold start problem in serverless computing. 2020 IEEE International Conference on Cloud Engineering (IC2E), pp. 144–153, (2020)
[191]
Senjab K, Abbas S, Ahmed N, and Khan AUR A survey of kubernetes scheduling algorithms J. Cloud Comput. 2023 12 1 87
[192]
Golec M, Gill SS, Wu H, Can TC, Golec M, Cetinkaya O, Cuadrado F, Parlikad AK, and Uhlig S Master: machine learning-based cold start latency prediction framework in serverless edge computing environments for industry 4.0 IEEE J. Select. Areas Sens. 2024 1 36-48
[193]
Wei, Y., Wang, X., Bian, S., Zhao, W., Jin, Y.: The-v: Verifiable privacy-preserving neural network via trusted homomorphic execution. 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–9, (2023)
[194]
Jaffe, C., Vreeman, D., Kaminker, D., Nguyen, V.: Implementing hl7 fhir. J. Healthcare Manage. Stand. (2023)
[195]
Gill, S.S., et al.: Quantum computing: vision and challenges. Technical Report, arXiv preprint arXiv:2403.02240, pp. 1–11, (2024)
[196]
Dupont M, Didier N, Hodson M, Moore J, and Reagor M Entanglement perspective on the quantum approximate optimization algorithm Phys. Rev. A 2022 106 2 022423
[197]
Zhang Y, Zhang R, and Potter A Qed driven qaoa for network-flow optimization Quantum 2020 5 510
[198]
Kirby WM and Love P Variational quantum eigensolvers for sparse hamiltonians Phys Rev Lett 2020 127 11 110503
[199]
Hatay ES, Golec M, Golec M, et al. Quantum cloud computing: trends and challenges J. Economy Technol. 2024 1 1-11
[200]
Du, Y., Hsieh, M.-H., Liu, T., You, S., Tao, D.: On the learnability of quantum neural networks. arXiv: Quantum Physics, (2020)
[201]
Zhao C and Gao X-S Qdnn: deep neural networks with quantum layers Quant. Mach. Intell. 2021 3 1-9
[202]
Nawaz SJ, Sharma SK, Wyne S, Patwary MN, and Asaduzzaman M Quantum machine learning for 6g communication networks: State-of-the-art and vision for the future IEEE Access 2019 7 46 317-46 350
[203]
Bravyi S, Kliesch A, Koenig R, and Tang E Hybrid quantum-classical algorithms for approximate graph coloring Quantum 2020 6 678
[204]
Kalapothas S, Flamis G, and Kitsos P Efficient edge-ai application deployment for fpgas Information 2022 13 279
[205]
Hu, Y., Liu, Y., Liu, Z.: A survey on convolutional neural network accelerators: Gpu, fpga and asic. 2022 14th International Conference on Computer Research and Development (ICCRD), pp. 100–107, (2022)
[206]
Vitale A, Donati E, Germann R, and Magno M Neuromorphic edge computing for biomedical applications: gesture classification using emg signals IEEE Sens. J. 2022 22 19 490-19 499
[207]
Li, Q., Ren, J., Pan, X., Zhou, Y., Zhang, Y.: Enigma: low-latency and privacy-preserving edge inference on heterogeneous neural network accelerators. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 458–469, (2022)
[208]
Qiao, Y., Munir, M.S., Adhikary, A., Le, H.Q., Raha, A.D., Zhang, C., Hong, C.-S.: Mp-fedcl: Multi-prototype federated contrastive learning for edge intelligence. ArXiv, vol. arXiv:abs/2304.01950, (2023)
[209]
Zhong J, Wu Y, Ma W, Deng S, and Zhou H Optimizing multi-objective federated learning on non-iid data with improved nsga-iii and hierarchical clustering Symmetry 2022 14 1070
[210]
Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, and Zhang Z Fedproc: prototypical contrastive federated learning on non-iid data Future Gener. Comput. Syst. 2021 143 93-104
[211]
Jiao, L., Denoeux, T., Liu, Z., Pan, Q.: Egmm: an evidential version of the gaussian mixture model for clustering. ArXiv, vol. arXiv:abs/2010.01333, (2020)
[212]
Hummelholm, A.: Ai-based quantum-safe cybersecurity automation and orchestration for edge intelligence in future networks. European Conference on Cyber Warfare and Security, (2023). [Online]. Available: https://api.semanticscholar.org/CorpusID:259453663
[213]
Samriya JK, Kumar M, and Gill SS Secured data offloading using reinforcement learning and markov decision process in mobile edge computing Int. J. Netw. Manage. 2023 33 5 e2243
[214]
S.P. C, Jain, K., Krishnan, P.: Analysis of post-quantum cryptography for internet of things. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 387–394, (2022)
[215]
Wang, L.-J., Zhang, K., Wang, J.-Y., Cheng, J., Yang, Y.-H., Tang, S.-B., Yan, D., tang, yan-lin, Liu, Z., Yu, Y., Zhang, Q., Pan, J.-W.: Experimental authentication of quantum key distribution with post-quantum cryptography. Npj Quant. Inform., vol. 7, (2020)
[216]
Yang J, Baker T, Gill SS, Yang X, Han W, and Li Y A federated learning attack method based on edge collaboration via cloud Pract. Exp. Softw. 2020 54 7 1257-1274
[217]
Yigit Y, Bal B, Karameseoglu A, Duong T, and Canberk B Digital twin-enabled intelligent ddos detection mechanism for autonomous core networks IEEE Commun. Stand. Magazine 2022 6 38-44
[218]
Ahmad, S.F., Ferjani, M.Y., Kasliwal, K.: Enhancing security in the industrial iot sector using quantum computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–5, (2021)
[219]
Badidi E Edge ai for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions Future Int. 2023 15 11 370

Index Terms

  1. Edge AI: A Taxonomy, Systematic Review and Future Directions
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Cluster Computing
            Cluster Computing  Volume 28, Issue 1
            Feb 2025
            1505 pages

            Publisher

            Kluwer Academic Publishers

            United States

            Publication History

            Published: 18 October 2024
            Accepted: 30 September 2024
            Revision received: 14 September 2024
            Received: 08 July 2024

            Author Tags

            1. Edge computing
            2. Artificial intelligence
            3. Cloud computing
            4. Machine learning
            5. Edge AI

            Qualifiers

            • Review-article

            Funding Sources

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 08 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media