Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures

Published: 01 March 2019 Publication History

Abstract

The linear and nonlinear intersubband optical absorption coefficients (OACs) of nonpolar AlGaN/GaN step quantum well structures (SQWs) were calculated theoretically for various geometrical structures, $$ \delta $$? doping schemes, and material compositions. The results revealed that the absorption frequency of such structures is obviously tunable by changing parameters such as the quantum well width, step barrier width, Al composition in the step barrier layer, and doping position. These characteristics can be attributed to non-polarization-related effects. The doping and Al composition were found to have remarkable effects on the position and magnitude of the peaks in the nonlinear optical absorption spectrum, whereas the geometric parameters of the SQWs, such as the well width and step barrier width, changed the magnitude of the peaks only very slightly. On the other hand, the nonlinear OACs of the SQWs were found to be strongly sensitive to the Al composition x and doping density in the step barrier layer. This study suggests that the step barrier layer in SQWs plays an important role in manipulating their intersubband optical absorption.

References

[1]
Iizuka, N., Yoshida, H., Managaki, N., Shimizu, T., Hassanet, S., Cumtornkittikul, C., Sugiyama, M., Nakano, Y.: Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion. Opt. Express 17, 23247---23253 (2009)
[2]
Vardi, A., Sakr, S., Mangeney, J., Kandaswamy, P.K., Monroy, E., Tchernycheva, M., Schacham, S.E., Julien, F.H., Bahir, G.: Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron. Appl. Phys. Lett. 99, 202111---202113 (2011)
[3]
Baumann, E., Giorgetta, F.R., Hofstetter, D., Lu, H., Chen, X., Schaff, W.J., Eastman, L.F., Golka, S., Schrenk, W., Strasser, G.: Intersubband photoconductivity at 1.6 μm using a strain-compensated AlN/GaNAlN/GaN superlattice. Appl. Phys. Lett. 87, 191102---191104 (2005)
[4]
Vardi, A., Bahir, G., Guillot, F., Bougerol, C., Monroy, E., Schacham, S.E., Tchernycheva, M., Julien, F.H.: Near infrared quantum cascade detector in GaN/AlGaN/AlNGaN/AlGaN/AlN heterostructures. Appl. Phys. Lett. 92, 011112 (2008)
[5]
Bellotti, E., Driscoll, K., Moustakas, T.D., Paiella, R.: Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors. J. Appl. Phys. 105, 113103 (2009)
[6]
Sun, G., Khurgin, J.B., Tsai, D.P.: Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study. Opt. Express 21, 28054---28061 (2013)
[7]
Suzuki, N., Iizuka, N.: Feasibility study on ultrafast nonlinear optical properties of 1.55-µm intersubband transition in AlGaN/GaN quantum wells. Jpn. J. Appl. Phys. Part 2 36, L1006---L1008 (1997)
[8]
Gmachl, C., Ng, H.M., Cho, A.Y.: Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of ? ~ 1.75---4.2 μm. Appl. Phys. Lett. 77, 334---336 (2000)
[9]
Gmachl, C.H., Ng, M.S., Chu, N.G., Cho, A.Y.: Intersubband absorption at ? ~ 1.55 μm in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers. Appl. Phys. Lett. 77, 3722---3724 (2000)
[10]
Shirazi-HD, M., Turkmeneli, K., Liu, S., Dai, S., Edmunds, C., Shao, J., Gardner, G., Zakharov, D.N., Manfra, M.J., Malis, O.: Dramatic enhancement of near-infrared intersubband absorption in c-plane AlInN/GaN superlattices. Appl. Phys. Lett. 108, 121108-5 (2016)
[11]
Kotani, T., Arita, M., Hoshino, K., Arakawa, Y.: Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 108, 052102 (2016)
[12]
Driscoll, K., Bhattacharyya, A., Moustakas, T.D., Paiella, R., Zhou, L., Smith, D.J.: Intersubband absorption in AlN/GaN/AlGaNAlN/GaN/AlGaN coupled quantum wells. Appl. Phys. Lett. 91, 141104-3 (2007)
[13]
Jakštas, V., Grigelionis, I., Janonis, V., Valušis, G., Kašalynas, I., Seniutinas, G., Juodkazis, S., Prystawko, P., Leszczyński, M.: Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110 K temperature. Appl. Phys. Lett. 110, 202101-3 (2017)
[14]
Bellotti, E., Driscoll, K., Moustakas, T., Paiella, R.: Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett. 92, 101112-3 (2008)
[15]
Vukmirović, N., Jovanović, V.D., Indjin, D., Ikonić, Z., Harrison, P., Milanović, V.: Optically pumped terahertz laser based on intersubband transitions in a GaN/AlGaN double quantum well. J. Appl. Phys. 97, 103106-5 (2005)
[16]
Kuokstis, E., Chen, C.Q., Gaevski, M.E., Sun, W.H., Yang, J.W., Simin, G., Khan, M.A., Maruska, H.P., Hill, D.W., Chou, M.C., Gallagher, J.J., Chai, B.: Polarization effects in photoluminescence of C- and M-plane GaN/AlGaN multiple quantum wells. Appl. Phys. Lett. 81, 4130---4132 (2002)
[17]
Durmaz, H., Nothern, D., Brummer, G., Moustakas, T.D., Paiella, R.: Terahertz intersubband photodetectors based on semi-polar GaN/AlGaN heterostructures. Appl. Phys. Lett. 108, 201102-3 (2016)
[18]
Fu, H., Chen, H., Huang, X., Lu, Z., Zhao, Y.: Theoretical analysis of modulation doping effects on intersubband transition properties of semipolar AlGaN/GaN quantum well. J. Appl. Phys. 121, 014501 (2017)
[19]
Kotani, T., Arita, M., Arakawa, Y.: Observation of mid-infrared intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 105, 261108 (2014)
[20]
Edmunds, C., Shao, J., Shirazi-HD, M., Manfra, M.J., Malis, O.: Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells. Appl. Phys. Lett. 105, 021109 (2014)
[21]
Yuh, P.F., Wang, K.L.: Optical transitions in a step quantum well. J. Appl. Phys. 65, 4377 (1989)
[22]
Teng, H.B., Sun, J.P., Haddad, G.I., Stroscio, M., Yu, S., Kim, K.W.: Phonon assisted intersubband transitions in step quantum well structures. J. Appl. Phys. 84, 2155---2164 (1998)
[23]
Wu, W., Chang, K., Jiang, D., Li, Y., Zheng, H.Z.: InxGa1?xAs/AlyGa1?yAs/AlzGa1?zAs asymmetric step quantum-well middle wavelength infrared detectors. J. Appl. Phys. 90, 3437---3441 (2001)
[24]
Wu, F., Tian, W., Yan, W.Y., Zhang, J., Sun, S., Dai, J., Fang, Y., Wu, Z., Chen, C.: Terahertz intersubband transition in GaN/AlGaN step quantum well. J. Appl. Phys. 113, 154505 (2013)
[25]
Wu, F., Tian, W., Zhang, J., Wang, S., Wan, Q., Dai, J., Wu, Z., Xu, J., Li, X., Fang, Y., Chen, C.: Double-resonance enhanced intersubband second-order nonlinear optical susceptibilities in GaN/AlGaN step quantum wells. Opt. Express 22, 14212---14220 (2014)
[26]
Liu, D., Cheng, Y., He, J.: Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells. Semicond. Sci. Technol. 31, 035006-5 (2016)
[27]
Machhadani, H., Kotsar, Y., Sakr, S., Tchernycheva, M., Colombelli, R., Mangeney, J., Bellet-Amalric, E., Sarigiannidou, E., Monroy, E., Julien, F.H.: Terahertz intersubband absorption in GaN/AlGaN step quantum wells. Appl. Phys. Lett. 97, 191101 (2010)
[28]
Ando, T., Taniyama, H., Ohtani, N., Nakayama, M., Hosoda, M.: Self-consistent calculation of subband occupation and electron---hole plasma effects: variational approach to quantum well states with Hartree and exchange-correlation interactions. J. Appl. Phys. 94, 4489 (2003)
[29]
Ahn, D., Chuang, L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. 23, 2196---2204 (1987)
[30]
Lim, C., Ajay, A., Lähnemann, J., Bougerol, C., Monroy, E.: Effect of Ge-doping on the short-wave, mid-and far-infrared intersubband transitions in GaN/AlGaN heterostructures. Semicond. Sci. Technol. 32, 125002(1---10) (2017)
[31]
Chen, J., Shi, T.: Influence of delta doping on intersubband transition and absorption in AlGaN/GaN step quantum wells for terahertz applications. Physica E 69, 96---100 (2015)

Cited By

View all
  • (2021)Theoretical investigation of the electronic structure and anisotropic optical properties of quasi-1D Sb2Se3 photovoltaic absorber materialsJournal of Computational Electronics10.1007/s10825-020-01595-220:1(317-323)Online publication date: 1-Feb-2021

Index Terms

  1. Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational Electronics
        Journal of Computational Electronics  Volume 18, Issue 1
        Mar 2019
        373 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 March 2019

        Author Tags

        1. Intersubband optical absorption
        2. Intersubband transition (ISBT) devices
        3. Modeling of linear and nonlinear optical absorption coefficients
        4. Nonpolar AlGaN/GaN quantum well structures

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 26 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2021)Theoretical investigation of the electronic structure and anisotropic optical properties of quasi-1D Sb2Se3 photovoltaic absorber materialsJournal of Computational Electronics10.1007/s10825-020-01595-220:1(317-323)Online publication date: 1-Feb-2021

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media