Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Numerical modelling of the surface plasmon modes of a circular cylindrical three-layer graphene waveguide

Published: 05 December 2024 Publication History

Abstract

In this paper, the characteristics of the fundamental mode of surface plasmons in a circular cylindrical three-layer graphene waveguide structure are investigated. By using Maxwell equations in the cylindrical coordinate system and applying the boundary conditions, the dispersion relation has been derived for the fundamental mode. In the proposed model, along with the electric field distribution in the waveguide, the effect of different model parameters on the dispersion curve has also been investigated. For instance, the effect of chemical potential, temperature and the separation between the first-second and second-third layers of the graphene has been shown and discussed in detail. Furthermore, the effect of chemical potential, temperature and separation between the first-second and second-third layers of the graphene on the propagation length and phase speed is also discussed.

References

[1]
Neto A, Guinea F, Peres N, Novoselov K, and Geim A The electronic properties of graphene Rev. Mod. Phys. 2009 81 109-162
[2]
Madani A and Entezar SR Surface polaritons of one-dimensional photonic crystals containing graphene monolayers Superlattices Microstruct. 2014 75 692-700
[3]
Low T and Aviaries P Graphene plasmonics for terahertz to mid-infrared applications ACS Nano 2014 8 2 1086-110
[4]
Bonaccorso F and Ferrari ZSHAC Graphene photonics and optoelectronics Nat Photonics 2010 4 611-622
[5]
Dx D and Sl H A silicon-based hybrid plasmonic waveguide with a metal cap for nano-scale light confinement Opt. Express 2009 17 19 16646-16653
[6]
Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, and Stormer H Ultrahigh electron mobility in suspended graphene Solid State Commun. 2008 146 9–10 351-355
[7]
Saeed M, Alkanhal MAS, Ghaffar A, Alqahtani AH, and Khan Y Energy plasmon modes in metamaterial-filled double-layer graphene-wrapped cylindrical waveguides Plasmonics 2021 16 695-709
[8]
Zhao T, Gong S, Hu M, Zhong R, Liu D, Chen X, Zhang P, Wang X, Zhang C, Wu P, and Liu S Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by cyclotron electron beam Sci. Rep. 2015 5 16059
[9]
Namdar A, Onsoroudi RF, khoshsima H, and Sahara M Terahertz surface plasmon-polaritons in one-dimensional graphene based Fibonacci photonic superlattices Micro Nano 2018 115 78-87
[10]
Jablan M, Buljan H, and Soljacic M Plasmonics in graphene at infrared frequencies Phys Rev B. 2009 80 245435
[11]
Zhao T, Hu M, Zhong R, Chen X, Zhang P, Gong S, Zhang C, and Lio S Plasmon modes of circular cylindrical double-layer graphene Opt. Express 2016 24 18 20461-20471
[12]
Nguyen BH and Nguyen VH Dispersion and attenuation of surface plasmon polariton at the metal-dielectric interface Adv. Nat. Sci. Nanosci. Nanotechnol 2014 5 3 2043-6262
[13]
Shi Z, Piredda G, Liapis AC, Nelson MA, Novotny L, and Boyd RW Surface-plasmon polaritons on metal-dielectric nanocomposite films Opt. Lett. 2009 34 22 3535-3537
[14]
Baron A, Larouche S, Gauthier DJ, and Smith DR Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface J. Opt. Soc. Am. B 2015 32 1 9-14
[15]
Mason DR, Menabde SG, Yu S, and Park N Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons Sci. Rep. 2014 4 4536
[16]
Kostiuenko O, Fiutowski J, Kawalec T, Bordo V, Rubahn HG, and Jozefowski L Surface plasmon polariton dispersion relation at organic/dielectric/metal interfaces Optic Commun. 2014 331 77-81
[17]
Maier, SA.: Plasmonics: Fundamentals and Applications. Springer, 3–220 (2007)
[18]
Mikhailov SA and Ziegler K New electromagnetic mode in graphene Phys. Rev. Lett. 2007 99 016803
[19]
Averkov YO, Yakovenko VM, Yampol VA, and Nori F Terahertz transverse-electric- and transverse-magnetic-polarized waves localized on graphene in photonic crystals Phys. Rev. B 2014 90 045415-045417
[20]
Geim AK and Novoselov KS The rise of graphene Nat. Mater. 2007 6 3 183-191
[21]
Luo X, Qiu T, Lu W, and Ni Z Plasmons in graphene: recent progress and applications Mater. Sci. Eng. R. Rep. 2013 74 11 351-376
[22]
Koppens FHL, Chang DE, and Abajo FJGD Graphene plasmonics: a platform for strong light-matter interactions Nano Lett. 2011 11 8 3370-3377
[23]
Chen J, Badioli M, Gonzalez PA, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Abajo FJGD, Hillenbrand R, and Koppens FHL Optical nano-imaging of gate-tunable graphene plasmons Nature 2012 487 7405 77-81
[24]
Svintsov D, Vyurkov V, Ryzhii V, and Otsuji T Voltage-controlled surface plasmon-polaritons in double graphene layer structures J. Appl. Phys. 2013 113 5 053701-053705
[25]
Yao Z, Huang Y, Wang Q, Hu F, Quan B, Li J, Gu C, and Xu X Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region Compute. Mater. Sci. 2016 117 544-548
[26]
Zhao J, Liu X, Qiu W, Ma Y, Huang Y, Wang JX, Qiang K, and Pan JQ Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated In GaAs nanowire cavity Opt. Express 2014 22 5 5754-5761
[27]
Gao Y, Ren G, Zhu B, Liu H, Lian Y, and Jian S Analytical model for plasmon modes in the graphene-coated nanowire Opt. Express 2014 22 20 24322-24331
[28]
Yang J, Yang J, Deng W, Mao F, and Huang M Transmission properties and molecular sensing application of CGPW Opt. Express 2015 23 25 32289-32299
[29]
Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, and Shen YR Ultrafast all-optical graphene modulator Nano Lett. 2014 14 2 955-959
[30]
Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, and Xia F Tunable infrared plasmonic devices using graphene/insulator stacks Nat. Nanotechnol. 2012 7 5 330-334
[31]
Liu JP, Zhai X, Wang LL, Li HJ, Xie F, Lin Q, and Xia SX Analysis of mid-infrared surface Plasmon modes in a graphene-based cylindrical hybrid waveguide Plasmonics 2016 11 703-711
[32]
Ma, R., Bashaiaha, E., Yallaa RR.:Fabrication and characterization of optical nanofiber tips. Physics. Optics, 1–13 (2024)
[33]
Kumar, M., Prasad, S.: Mid-infrared sensor based on resonance excitation of graphene plasmon polariton-coupled Bloch surface modes at the interface of anisotropically truncated one-dimensional ternary photonic crystal. Waves in Random and Complex Media, 1–16 (2021)
[34]
Hwang EH and Das Sarma S Dielectric function, screening and plasmons in two-dimensional graphene Phys. Rev. B 2007 75 20 205418
[35]
Gusynin VP, Sharapov SG, and Carbotte JP Magneto-optical conductivity in graphene J. Phys. Condens. Matter 2007 19 2 026222

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Computational Electronics
Journal of Computational Electronics  Volume 24, Issue 1
Feb 2025
523 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 December 2024
Accepted: 22 October 2024
Received: 03 November 2023

Author Tags

  1. Graphene
  2. Chemical potential
  3. Circular cylindrical waveguide
  4. Surface plasmon polariton

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media