Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô

Published: 01 April 2021 Publication History

Abstract

Autonomous mobile devices operating in confined environments, such as pipes, underground tunnel systems, and cave networks, face multiple open challenges from the robotics perspective. Those challenges, such as mobility, localization, and mapping in GPS denied scenarios, are receiving particular attention from the academy and industry. One example is the Brazilian mining company Vale S.A., which is employing a robot – EspeleoRobô (SpeleoRobot) – to access restricted and dangerous areas for human workers. The EspeleoRobô is a robot initially designed for natural cave inspection during teleoperated missions. It is now being used to monitor other types of confined environments, such as dam galleries and other restrained or dangerous areas. This paper describes the platform in its current version and the pipeline used for semi-autonomous inspection in confined environments. The pipeline includes photorealistic mapping techniques, Simultaneous Localization and Mapping (SLAM) with LiDAR, path planning based on mobility optimization, and navigation control using vector fields to reduce operator dependency of the robot operation. The proposed concept was validated in simulations with a realistic underground tunnel system and in representative real-world scenarios. The results endorse the viability of using the proposed concept for real deployments.

References

[1]
Booz, A.: Unearthing the subterranean environment. https://www.subtchallenge.com/ (2018)
[2]
Murphy, R.R.: Disaster robotics (2014)
[3]
Azpurua, H., Rocha, F., Garcia, G., Santos, A.S., Cota, E., Barros, L.G., Thiago, A.S., Gustavo P., Gustavo M.F.: EspeleoRobô - a robotic device to inspect confined environments. In: 2019 19th Int. Conf. on Advanced Robotics (ICAR), IEEE (2019)
[4]
Saranli U, Buehler M, and Koditschek DE Rhex: A simple and highly mobile hexapod robot Int. J. Robot. Res. 2001 20 7 616-631
[5]
Freitas, G.M., Rocha, F.A.S., Torre, M.P., Frederico, F.J.A., Ramos, V.R., Nogueira, L.E.C., Santos, A.S., Cota, E., Miola, W., Reis, M.A.D., Costa, B.L.S., Ledezma, L.C.M., Evangelista, R.P., Alcantara, P.X., Lima, R.T., De Souza, T.P., Brandi, I.V., Araujo, R.N., Gomes, M.F.M., Garcia, G.C.: Multi-terrain inspection robotic device and methods for configuring and guiding the same - pct/br2018/050025 (2018)
[6]
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop, vol. 3, pp. 5. Kobe (2009)
[7]
RocketM Datasheet: Ubiquiti Networks Inc. https://dl.ubnt.com/datasheets/rocketm/RocketM_DS.pdf (2015)
[9]
WiFi for Industrial Internet of Things – Reseiwe: RESEIWE A/S, https://reseiwe.com/wifi-for-industrial-internet-of-things-2/ (2017)
[10]
Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster robotics. In: Springer Handbook of Robotics, pp. 1577–1604. Springer (2016)
[11]
Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, and Leonard JJ Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age IEEE Trans. Robot. 2016 32 6 1309-1332
[12]
Siciliano B and Khatib O Springer handbook of robotics 2016 Berlin Springer
[13]
Durrant-Whyte H and Bailey T Simultaneous localization and mapping: part i IEEE Robot. Automat. Mag. 2006 13 2 99-110
[14]
Fuentes-Pacheco J, Ascencio J, and Rendon-Mancha J Visual simultaneous localization and mapping: A survey Artif. Intell. Rev. 2015 43 11
[15]
Filipenko, M., Afanasyev, I.: Comparison of various slam systems for mobile robot in an indoor environment. In: Int. Conf. on Intelligent Systems (IS), pp. 400–407. IEEE (2018)
[16]
Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE (2016)
[17]
Droeschel, D., Behnke, S.: Efficient continuous-time slam for 3d lidar-based online mapping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–9. IEEE (2018)
[18]
Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In: European Conf. on Computer Vision, pp 834–849, Springer (2014)
[19]
Mur-Artal R, Montiel JMM, and Tardos JD Orb-slam: a versatile and accurate monocular slam system IEEE Trans. Robot. 2015 31 5 1147-1163
[20]
Labbé M and Michaud F Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation J. Field Robot. 2019 36 2 416-446
[21]
Labbe M and Michaud F Appearance-based loop closure detection for online large-scale and long-term operation IEEE Trans. Robot. 2013 29 3 734-745
[22]
Rezende, A.M.C., Júnior, G.P.C., Fernandes, R., Miranda, V.R.F., Azpúrua, H., Pessin, G., Gustavo, M.F.: Indoor localization and navigation control strategies for a mobile robot designed to inspect confined environments. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 1427–1433. IEEE (2020)
[23]
Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of lidar-based 2d slam algorithms using precise ground truth. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1979–1983. IEEE (2018)
[24]
Ji Z and Singh S Low-drift and real-time lidar odometry and mapping Auton. Robot. 2017 41 2 401-416
[25]
Koide K, Miura J, and Menegatti E A portable three-dimensional lidar-based system for long-term and wide-area people behavior measurement Int. J. Adv. Robot. Syst. 2019 16 2 1729881419841532
[26]
Tixiao Shan, Brendan Englot: Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp 4758–476., IEEE (2018)
[27]
Wolf, P.R., Dewitt, B.A., Wilkinson, B.E.: Elements of photogrammetry with applications in GIS, 4th ed. 696 pp. ISBN 9780071761123 (2014)
[28]
Low, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110. https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf (2004)
[29]
Bay H, Ess A, Tuytelaars T, and Gool LV Speeded-up robust features (surf) Comput. Vis. Image Underst. 2008 110 3 346-359
[30]
Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: CVPR 2011, pp 3057–306. IEEE (2011)
[31]
Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org
[32]
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp 2161–2168 (2006)
[33]
Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: 2013 IEEE International Conference on Computer Vision, pp. 3248–3255 (2013)
[34]
Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 2, pp 807–814 (2005)
[35]
Jancosek, M., Pajdla, T.: Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces. International Scholarly Research Notices, 2014: 1–20. ISSN 2356-7872 (2014)
[36]
Bruno, L., Sylvain, P., Nicolas, R., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pp. 362–371 (2002)
[37]
AliceVision: Meshroom: A 3D reconstruction software. https://github.com/alicevision/meshroom (2018)
[38]
Moulon, P., Monasse, P., Renaud, M.: Adaptive structure from motion with a contrario model estimation. In: Proceedings of the Asian Computer Vision Conference (ACCV 2012), pp 257–270. Springer, Berlin (2012)
[39]
Shewchuk JR Delaunay refinement algorithms for triangular mesh generation Comput. Geom. 2002 22 1-3 21-74
[40]
Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J.F.: Octree-based decimation of marching cubes surfaces. In: Proceedings of the 7th conference on Visualization’96, pp. 335–ff IEEE Computer Society Press (1996)
[41]
Kazhdan M, Klein A, Dalal K, and Hoppe H Unconstrained isosurface extraction on arbitrary octrees Symp. Geom. Process. 2007 7 256-263
[42]
Carr, J.C., Beatson, R.K., McCallum, B.C., Fright, W.R., McLennan, T.J., Mitchell, T.J.: Smooth surface reconstruction from noisy range. In: Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia, pp 119–ff ACM (2003)
[43]
Kazhdan M and Hoppe H Screened poisson surface reconstruction ACM Trans. Graph. (TOG) 2013 32 3 29
[44]
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. 26, ACM (1992)
[45]
Fabri, A., Sylvain, P.: CGAL The Computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp. 538–53. ACM (2009)
[46]
Liepa, P.: Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing, pp. 200–205. Eurographics Association (2003)
[47]
Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, pp. 517–524. ACM (1968)
[48]
Phong BT Illumination for computer generated pictures Commun. ACM 1975 18 6 311-317
[49]
Macenski, S., Martin, F., White, R., Clavero, J.G.: The marathon 2: A navigation system. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)
[50]
Karaman S and Frazzoli ESampling-based algorithms for optimal motion planningInt. J. Robot. Res.2011307846-894https://doi.org/10.1177/0278364911406761
[51]
Miranda, V.R.F., Mozelli, L.A., Neto, A.A., Freitas, G.M.: On the robust longitudinal trajectory tracking for load transportation vehicles on uneven terrains. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp 320–325. IEEE (2019)
[52]
Sousa, R.L.S., Forte, M.D.N., Nogueira, F.G., Torrico, B.C.: Trajectory tracking control of a nonholonomic mobile robot with differential drive. In: IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6. IEEE, p 2016 (2016)
[53]
Cho N, Kim Y, and Park SThree-dimensional nonlinear differential geometric path-following guidance lawJ. Guid. Control Dyn.201538122366-2385https://doi.org/10.2514/1.G001060
[54]
Gonçalves VM, Pimenta LCA, Maia CA, Dutra BCO, and Pereira GAS Vector fields for robot navigation along time-varying curves in n-dimensions IEEE Trans. Robot. 2010 26 4 647-659 ISSN 1552-3098
[55]
Rezende, A.M.C., Junioŕ, G.P.C., Fernandes, R., Miranda, V.R.F., Azpúrua, H., Pessin, G., Freitas, G.M.: Indoor localization and navigation control strategies for a mobile robot designed to inspect confined environments. In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), pp. 1427–1433 (2020)
[56]
Santos, A.S., Azpúrua, H.I.P., Pessin, G., Freitas, G.M.: Path planning for mobile robots on rough terrain. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and Workshop on Robotics in Education (WRE), pp. 265–270. IEEE, p 2018 (2018)
[57]
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: modelling, planning and control. Springer Science & Business Media (2010)
[58]
Chaimowicz, L., Michael, N., Kumar, V.: Controlling swarms of robots using interpolated implicit functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. pp. 2487–2492 (2005)
[59]
Carrillo H, Dames P, Kumar V, and Castellanos JA Autonomous robotic exploration using a utility function based on rényi’s general theory of entropy Auton. Robot. 2018 42 2 235-256

Index Terms

  1. Towards Semi-autonomous Robotic Inspection and Mapping in Confined Spaces with the EspeleoRobô
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Journal of Intelligent and Robotic Systems
        Journal of Intelligent and Robotic Systems  Volume 101, Issue 4
        Apr 2021
        316 pages

        Publisher

        Kluwer Academic Publishers

        United States

        Publication History

        Published: 01 April 2021
        Accepted: 18 January 2021
        Received: 02 July 2020

        Author Tags

        1. Subterranean exploration with mobile robots
        2. 3D reconstruction and mapping
        3. GPS-denied localization
        4. path planning in rugged terrains
        5. Vector field control

        Qualifiers

        • Research-article

        Funding Sources

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 03 Feb 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media