Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

P.L. Homeomorphic Manifolds are Equivalent by Elementary Shellings

Published: 01 February 1991 Publication History

Abstract

Shellability of simplicial complexes has been a powerful concept in polyhedral theory, in p.l. topology and recently in connection with Cohen-Macaulay rings and toric varieties. It is well known that all 2-spheres and all boundary complexes of convex polytopes are shellable, but the analogous theorem fails for general simplicial balls and spheres. In this paper we study transformations of simplicial p.l. manifolds by elementary boundary operations (shellings and inverse shellings). As the main result we shall show that a simplicial p.l. manifold M can be transformed to any other simplical p.l. manifold M homeomorphic to M using these elementary operations. The tools we need and related results are summarized. In the last part we study generalized sheltings of totally strongly connected simplicial complexes and the effects on the face numbers of the complex.

References

[1]
J.W. Alexander, The combinatorial theory of complexes, Ann. Math, 31 (1930) 292-320.
[2]
P.S. Alexandroff, H. Hopf, Springer-Verlag, Berlin, 1935.
[3]
A. Altshuler, J. Bokowski, L. Steinberg, The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes, Discr. Math, 31 (1980) 115-124.
[4]
D. Barnette, A proof of the lower bound conjecture for convex polytopes, Pac. J. Math, 46 (1973) 349-354.
[5]
L.J. Billera, C.W. Lee, A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes, J. Combin. Theory Ser. A, 31 (1981) 237-255.
[6]
A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Am. Math. Soc, 260 (1980) 159-183.
[7]
R. Blind, P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math, 34 (1987) 287-297.
[8]
H. Bruggesser, P. Mani, Shellable decompositions of cells and spheres, Math. Scand, 29 (1972) 197-205.
[9]
G. Danaraj, V. Klee, Shellings of spheres and polytopes, Duke Math. J, 41 (1974) 443-451.
[10]
G. Danaraj, V. Klee, Which spheres are shellable?, Ann. Discr. Math, 2 (1978) 33-52.
[11]
V.I. Danilov, Birational geometry of toric 3-folds, Math. USSR Izv, 21 (1983) 269-280.
[12]
R.D. Edwards, The double suspension of a certain homology 3-sphere is S5, Am. Math. Soc. Notices, 22 (1975) 334.
[13]
G. Ewald, über die stellare Äquivalenz konvexer Polytope, Result. Math, 1 (1978) 54-64.
[14]
G. Ewald, über stellare Unterteilung von Simplizialkomplexen, Archiv Math, 46 (1986) 153-158.
[15]
G. Ewald, Torische Varietaten and konvexe Polytope, Stud. Scient. Math. Hung, 22 (1987) 11-18.
[16]
G. Ewald, Blow-ups of smooth toric 3-varieties, Abh. Math. Sem. Hamb, 57 (1987) 193-201.
[17]
G. Ewald, G.C. Shephard, Stellar subdivisions of boundary complexes of convex polytopes, Math. Ann, 210 (1974) 7-16.
[18]
G. Ewald, P. Kleinschmidt, U. Pachner, Chr. Schulz, Neuere Entwicklungen in der kombinatorischen Konvexgeometrie, in: Contributions to Geometry: Proceedings of the Geometry Symposium in Siegen, 1978, Birkhäuser-Verlag, Basel, 1979.
[19]
L.C. Glaser, Geometrical Combinatorial Topology, Vol. 1, Van Nostrand Reinhold, New York, 1970.
[20]
B. Grünbaum, Interscience Publishers, New York, 1967.
[21]
B. Grünbaum: Two non-shellable triangulations of the 3-cell, manuscript, 1972.
[22]
J.F.P. Hudson, Piecewise Linear Topology, in: Math. Lect. Note Ser., Benjamin, New York, 1969.
[23]
B. Kind, P. Kleinschmidt, Schälbare Cohen-Macaulay Komplexe and ihre Parametrisierung, Math. Z, 167 (1979) 173-179.
[24]
P. Kleinschmidt, Stellare Abänderungen and Schälbarkeit von Komplexen and Polytopen, J. Geom, 11 (1978) 161-176.
[25]
C.W. Lee, Two combinatorial properties of a class of simplicial polytopes, Isr. J. Math, 47 (1984) 261-269.
[26]
C.W. Lee: Regular triangulations of convex polytopes, to appear.
[27]
C.W. Lee, PL-spheres and convex polytopes, in preparation.
[28]
A. Mandel, Topology of oriented matroids, in: Ph.D. thesis, University of Waterloo, Ontario, Canada, 1982.
[29]
P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika, 17 (1970) 179-184.
[30]
P. McMullen, D.W. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika, 18 (1971) 264-273.
[31]
M.H.A. Newman, Combinatorial topology of convex regions, Proc. Nad. Acad. Sci, 16 (1930) 240-242.
[32]
U. Pachner, Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten, Archiv Math, 30 (1978) 89-98.
[33]
U. Pachner, über die bistellare Äquivalenz simplizialer Sphären and Polytope, Math. Z, 176 (1981) 565-576.
[34]
U. Pachner, Diagonalen in Simplizialkomplexen, Geom. Ded, 24 (1987) 1-28.
[35]
U. Pachner, Konstruktionsmethoden and das kombinatorische Hombomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Hamb, 57 (1987) 69-86.
[36]
U. Pachner, Ein Henkeltheorem fur geschlossene semilineare Mannigfaltigkeiten, Result. Math, 12 (1987) 386-394.
[37]
U. Pachner, Shellings of simplicial balls and p.l. manifolds with boundary, Discr. Math, 81 (1990) 37-47.
[38]
G. Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. Math, 21 (1976) 30-49.
[39]
M.E. Rudin, An unshellable triangulation of a tetrahedron, Bull. Am. Math. Soc, 64 (1958) 90-91.
[40]
R.P. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Am. Math. Soc, 81 (1975) 133-135.
[41]
R.P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math, 54 (1975) 135-142.
[42]
R.P. Stanley, Cohen-Macaulay complexes, in: Higher Combinatorics, NATO Adv. Study Inst., Set. C: Math. Phys. Sci., 31, Reidel, Dordrecht, 1977, pp. 51-62.
[43]
R.P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math, 35 (1980) 236-238.

Cited By

View all

Index Terms

  1. P.L. Homeomorphic Manifolds are Equivalent by Elementary Shellings

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image European Journal of Combinatorics
    European Journal of Combinatorics  Volume 12, Issue 2
    March 1991
    90 pages

    Publisher

    Academic Press Ltd.

    United Kingdom

    Publication History

    Published: 01 February 1991

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media