Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A divergence-free hybrid finite volume / finite element scheme for the incompressible MHD equations based on compatible finite element spaces with a posteriori limiting

Published: 25 June 2024 Publication History

Abstract

We present a novel semi-implicit hybrid finite volume/finite element (FV/FE) method for the equations of viscous and resistive incompressible magnetohydrodynamics (MHD). The scheme preserves the divergence-free property of the magnetic field exactly on the discrete level, is second order accurate in space, and is stable in the limit of vanishing viscosity and resistivity. In particular, the MHD system is first split into a fluid and a magnetic subsystem. The former is then addressed via a semi-implicit hybrid FV/FE method. The latter belongs to a class of generalized advection-diffusion problems, for which we propose a novel semi-implicit scheme based on compatible finite element spaces and interpolation-contraction operators. In the case of vanishing resistivity, the new algorithm avoids the solution of a linear system at each time step, thanks to the framework of physical degrees of freedom, which allow to express the exterior derivative as the incidence matrix of an appropriate refinement of the original mesh. Regarding the timestepping, a local fully-discrete Lax-Wendroff-type evolution is proposed as an alternative to the classical semi-discrete method of lines. In order to suppress spurious oscillations in the presence of discontinuities or steep gradients in the magnetic field, a new simple but efficient a posteriori limiting procedure based on a nonlinear artificial resistivity is introduced. The novel methodology is validated with several test cases in two and three space dimensions using unstructured simplex meshes.

References

[1]
J. Brackbill, D. Barnes, The effect of nonzero ∇ ⋅ B on the numerical solutions of the magnetohydrodynamics equation, J. Comput. Phys. 430 (1980) 426–430.
[2]
C.D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voss, Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys. 161 (2000) 484–511.
[3]
A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys. 175 (2002) 645–673.
[4]
K. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), Tech. Rep. ICASE-Report 94-24 (NASA CR-194902) NASA Langley Research Center, Hampton, VA, 1994.
[5]
K. Powell, P. Roe, T. Linde, T. Gombosi, D.D. Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 154 (1999) 284–309.
[6]
S. Godunov, Symmetric form of the magnetohydrodynamic equation, Numer. Methods Mech. Contin. Media 3 (1) (1972) 26–34.
[7]
K. Yee, Numerical solution of initial voundary value problems involving Maxwell equation in isotropic media, IEEE Trans. Antennas Propag. 14 (1966) 302–307.
[8]
C. DeVore, Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comput. Phys. 92 (1991) 142–160.
[9]
T. Gardiner, J. Stone, An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys. 205 (2) (2005) 509–539.
[10]
D. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys. 149 (1999) 270–292.
[11]
D. Balsara, D. Spicer, Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys. 148 (1999) 133–148.
[12]
D. Balsara, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys. 174 (2) (2001) 614–648.
[13]
D. Balsara, Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser. 151 (2004) 149–184.
[14]
D. Balsara, Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys. 229 (2010) 1970–1993.
[15]
D. Balsara, M. Dumbser, Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys. 299 (2015) 687–715.
[16]
M. Dumbser, D.S. Balsara, M. Tavelli, F. Fambri, A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics, Int. J. Numer. Methods Fluids 89 (2019) 16–42.
[17]
F. Fambri, A novel structure preserving semi-implicit finite volume method for viscous and resistive magnetohydrodynamics, Int. J. Numer. Methods Fluids 93 (12) (2021) 3447–3489.
[18]
F. Fambri, E. Zampa, S. Busto, L. Río-Martín, F. Hindenlang, E. Sonnendrücker, M. Dumbser, A well-balanced and exactly divergence-free staggered semi-implicit hybrid finite volume / finite element scheme for the incompressible MHD equations, J. Comput. Phys. 493 (2023).
[19]
K. Hu, Y. Ma, X. J, Stable finite element methods preserving ∇ ⋅ B = 0 exactly for MHD models, Numer. Math. 135 (2017).
[20]
T. Cheng, C. Shu, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys. 345 (2017) 427–461.
[21]
Y. Liu, C. Shu, M. Zhang, Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys. 354 (2018) 163–178.
[22]
D. Derigs, A.R. Winters, G. Gassner, S. Walch, M. Bohm, Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys. 364 (2018) 420–467.
[23]
P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal. 54 (2) (2016) 1313–1340.
[24]
D. Ray, P. Chandrashekar, An entropy stable finite volume scheme for the two dimensional Navier–Stokes equations on triangular grids, Appl. Math. Comput. 314 (2017) 257–286.
[25]
S. Busto, M. Dumbser, A new thermodynamically compatible finite volume scheme for magnetohydrodynamics, SIAM J. Numer. Anal. 61 (2023) 343–364.
[26]
S. Busto, M. Dumbser, A new class of general, efficient and simple finite volume schemes for overdetermined thermodynamically compatible hyperbolic systems, Commun. Appl. Math. Comput. Sci. (2023).
[27]
D. Arnold, R. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006) 1–155.
[28]
D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc. (N. S.) 47 (2) (2010) 281–354.
[29]
R. Hiptmair, L. Li, S. Mao, W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci. 28 (4) (2018) 659–695.
[30]
K. Hu, J. Lee, J. Xu, Helicity-conservative finite element discretization for incompressible MHD systems, J. Comput. Phys. 436 (2021).
[31]
F. Laakmann, K. Hu, P.E. Farrell, Structure-preserving and helicity-conserving finite element approximations and preconditioning for the Hall MHD equations, J. Comput. Phys. 492 (2023).
[32]
E. Gawlik, F. Gay-Balmaz, A structure-preserving finite element method for compressible ideal and resistive magnetohydrodynamics, J. Plasma Phys. 87 (2021).
[33]
E. Gawlik, F. Gay-Balmaz, A finite element method for MHD that preserves energy, cross-helicity, magnetic helicity, incompressibility, and div b, J. Comput. Phys. 450 (2022).
[34]
F. Li, L. Xu, S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys. 230 (12) (2011) 4828–4847.
[35]
F. Li, L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys. 231 (6) (2012) 2655–2675.
[36]
Z. Xu, Y. Liu, New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field, J. Comput. Phys. 327 (2016) 203–224.
[37]
G. Fu, An explicit divergence-free DG method for incompressible magnetohydrodynamics, J. Sci. Comput. 79 (3) (2019) 1737–1752.
[38]
G. Wimmer, X. Tang, Structure preserving transport stabilized compatible finite element methods for magnetohydrodynamics, J. Comput. Phys. 501 (2024) 112777.
[39]
G. Cohen, P. Joly, J.E. Roberts, N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal. 38 (6) (2001) 2047–2078.
[40]
J.-L. Guermond, R. Pasquetti, A correction technique for the dispersive effects of mass lumping for transport problems, Comput. Methods Appl. Mech. Eng. 253 (2013) 186–198.
[41]
R. Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices, J. Sci. Comput. 73 (2–3) (2017) 461–494.
[42]
A. Bermúdez, S. Busto, M. Dumbser, J. Ferrín, L. Saavedra, M. Vázquez-Cendón, A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows, J. Comput. Phys. 421 (2020).
[43]
S. Busto, L.D. Rio, M. Vázquez-Cendón, M. Dumbser, A semi-implicit hybrid finite volume / finite element scheme for all Mach number flows on staggered unstructured meshes, Appl. Math. Comput. 402 (2021).
[44]
S. Busto, M. Dumbser, L. Río-Martín, An arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations, Appl. Math. Comput. 437 (2023).
[45]
A. Lucca, S. Busto, M. Dumbser, An implicit staggered hybrid finite volume/finite element solver for the incompressible Navier-Stokes equations, East Asian J. Appl. Math. 13 (2023) 671–716.
[46]
L. Río-Martín, S. Busto, M. Dumbser, A massively parallel hybrid finite volume/finite element scheme for computational fluid dynamics, Mathematics 9 (2021) 2316.
[47]
S. Busto, M. Dumbser, L. Río-Martín, Staggered semi-implicit hybrid finite volume/finite element schemes for turbulent and non-Newtonian flows, Mathematics 9 (2021) 2972.
[48]
S. Busto, M. Dumbser, A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers, Appl. Numer. Math. 175 (2022) 108–132.
[49]
R. Hiptmair, C. Pagliantini, Splitting-based structure preserving discretization of magnetohydrodynamics, SMAI J. Comput. Math. 4 (2018) 225–257.
[50]
F. Rapetti, A. Bossavit, Whitney forms of higher degree, SIAM J. Numer. Anal. 47 (3) (2009) 2369–2386.
[51]
S.H. Christiansen, F. Rapetti, On high order finite element spaces of differential forms, Math. Comput. 85 (2013) 517–548.
[52]
A. Alonso Rodríguez, L. Bruni Bruno, F. Rapetti, Minimal sets of unisolvent weights for high order Whitney forms on simplices, in: Numerical Mathematics and Advanced Applications—Enumath 2019, in: Lect. Notes Comput. Sci. Eng., Springer, Cham, 2020, pp. 195–203.
[53]
E. Zampa, A.A. Rodríguez, F. Rapetti, Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms, Adv. Comput. Math. 49 (17) (2023).
[54]
L. Bruni Bruno, E. Zampa, Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms, ESAIM Math. Model. Numer. Anal. 56 (6) (2022) 2239–2253.
[55]
S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conservation lawsmulti-dimensional optimal order detection (MOOD), J. Comput. Phys. 230 (2011) 4028–4050.
[56]
S. Diot, S. Clain, R. Loubère, Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids 64 (2012) 43–63.
[57]
S. Diot, R. Loubère, S. Clain, The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids 73 (2013) 362–392.
[58]
M. Tavelli, M. Dumbser, A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys. 341 (2017) 341–376.
[59]
S. Klainermann, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluid, Commun. Pure Appl. Math. 34 (1981) 481–524.
[60]
S. Klainermann, A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. 35 (1982) 629–651.
[61]
C. Munz, R. Klein, S. Roller, K. Geratz, The extension of incompressible flow solvers to the weakly compressible regime, Comput. Fluids 32 (2003) 173–196.
[62]
R. Klein, N. Botta, T. Schneider, C. Munz, S. Roller, A. Meister, L. Hoffmann, T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Eng. Math. 39 (2001) 261–343.
[63]
H. Heumann, R. Hiptmair, Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms, Discrete Contin. Dyn. Syst. 29 (4) (2011) 1471–1495.
[64]
W. Boscheri, A. Chiozzi, M.G. Carlino, G. Bertaglia, A new family of semi-implicit finite volume / virtual element methods for incompressible flows on unstructured meshes, Comput. Methods Appl. Mech. Eng. 414 (2023).
[65]
S. Busto, J.L. Ferrín, E.F. Toro, M.E. Vázquez-Cendón, A projection hybrid high order finite volume/finite element method for incompressible turbulent flows, J. Comput. Phys. 353 (2018) 169–192.
[66]
A. Bermúdez, J.L. Ferrín, L. Saavedra, M.E. Vázquez-Cendón, A projection hybrid finite volume/element method for low-Mach number flows, J. Comput. Phys. 271 (2014) 360–378.
[67]
E.T. Chung, C.S. Lee, A staggered discontinuous Galerkin method for the convection–diffusion equation, J. Numer. Math. 20 (2012) 1–31.
[68]
E.T. Chung, C.S. Lee, A staggered discontinuous Galerkin method for the curl-curl operator, IMA J. Numer. Anal. 32 (3) (2012) 1241–1265.
[69]
H.H. Kim, E.T. Chung, C.S. Lee, A staggered discontinuous Galerkin method for the Stokes system, SIAM J. Numer. Anal. 51 (6) (2013) 3327–3350.
[70]
M. Tavelli, M. Dumbser, A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Appl. Math. Comput. 248 (2014) 70–92.
[71]
M. Tavelli, M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys. 319 (2016) 294–323.
[72]
S. Busto, M. Tavelli, W. Boscheri, M. Dumbser, Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. Fluids 198 (2020).
[73]
M. Tavelli, M. Dumbser, Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity, J. Comput. Phys. 366 (2018) 386–414.
[74]
M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys. 148 (2) (1999) 497–526.
[75]
S. Delcourte, K. Domelevo, P. Omnes, A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal. 45 (2007) 1142–1174.
[76]
S. Delcourte, P. Omnes, A discrete duality finite volume discretization of the vorticity-velocity-pressure Stokes problem on almost arbitrary two-dimensional grids, Numer. Methods Partial Differ. Equ. 31 (2015) 1–30.
[77]
M. Dumbser, A. Hidalgo, M. Castro, C. Parés, E.F. Toro, FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng. 199 (2010) 625–647.
[78]
R. Costa, S. Clain, G. Machado, A sixth-order finite volume scheme for the steady-state incompressible Stokes equations on staggered unstructured meshes, J. Comput. Phys. 349 (2017) 501–527.
[79]
E.F. Toro, R.C. Millington, L.A.M. Nejad, Godunov Methods, Springer, 2001, Ch. Towards very high order Godunov schemes.
[80]
E. Toro, Riemann Solvers and Numerical Methods for Fluids Dynamics, Springer, 2009.
[81]
D. Balsara, M. Dumbser, R. Abgrall, Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys. 261 (2014) 172–208.
[82]
J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, 2nd edition, Springer, 2012.
[83]
J.-C. Nédélec, A new family of mixed finite elements in R 3, Numer. Math. 50 (1) (1986) 57–81.
[84]
J.-C. Nédélec, Mixed finite elements in R 3, Numer. Math. 35 (3) (1980) 315–341.
[85]
M. Licht, Averaging based local projections in finite element exterior calculus, 2023.
[86]
J. Lohi, Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus, Numer. Algorithms 91 (2022) 1261–1285.
[87]
M. Bonazzoli, E. Gaburro, V. Dolean, F. Rapetti, High order edge finite element approximations for the time-harmonic Maxwell's equations, in: 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 2014, pp. 1–4.
[88]
L. Kettunen, J. Lohi, J. Räbinä, S. Mönkölä, T. Rossi, Generalized finite difference schemes with higher order Whitney forms, ESAIM Math. Model. Numer. Anal. 55 (4) (2021) 1439–1459.
[89]
W. Tonnon, R. Hiptmair, Semi-Lagrangian Finite-Element Exterior Calculus for incompressible flows, 2023.
[90]
A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159, Springer, 2004.
[91]
H.-G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, vol. 24, second edition, Springer-Verlag, Berlin, 2008.
[92]
J.-L. Guermond, B. Popov, Y. Yang, The effect of the consistent mass matrix on the maximum-principle for scalar conservation equations, J. Sci. Comput. 70 (2017) 1358–1366.
[93]
P. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, in: Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, Ireland, 1972), Academic Press, London, UK, 1973, pp. 233-2.
[94]
M. Tabata, A finite element approximation corresponding to the upwind differencing, Mem. Numer. Math. 1 (1977) 47–63.
[95]
P. Lax, B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (2) (1960) 217–237.
[96]
J. Qiu, M. Dumbser, C.-W. Shu, The discontinuous Galerkin method with Lax–Wendroff type time discretizations, Comput. Methods Appl. Mech. Eng. 194 (2005) 4528–4543.
[97]
M. Dumbser, T. Schwartzkopff, C.-D. Munz, Arbitrary high order finite volume schemes for linear wave propagation, in: E. Krause, Y. Shokin, M. Resch, N. Shokina (Eds.), Computational Science and High Performance Computing II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 129–144.
[98]
J. Donea, A Taylor–Galerkin method for convective transport problems, Int. J. Numer. Methods Eng. 20 (1) (1984) 101–119.
[99]
J. Donea, S. Giuliani, H. Laval, L. Quartapelle, Time-accurate solution of advection-diffusion problems by finite elements, Comput. Methods Appl. Mech. Eng. 45 (1) (1984) 123–145.
[100]
T. Tarhasaari, L. Kettunen, A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques, IEEE Trans. Magn. 35 (3) (1999) 1494–1497.
[101]
R. Hiptmair, Discrete Hodge operators, Numer. Math. 90 (2001) 265–289.
[102]
M. Campos Pinto, E. Sonnendrücker, Gauss-compatible Galerkin schemes for time-dependent Maxwell equations, Math. Comput. 85 (2016) 2651–2685.
[103]
M. Dumbser, O. Zanotti, R. Loubère, S. Diot, A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys. 278 (2014) 47–75.
[104]
O. Zanotti, F. Fambri, M. Dumbser, A. Hidalgo, Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Comput. Fluids 118 (2015) 204–224.
[105]
M. Dumbser, R. Loubère, A simple robust and accurate a posteriori sub–cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys. 319 (2016) 163–199.
[106]
C. Pagliantini, Computational magnetohydrodynamics with discrete differential forms, Ph.D. thesis ETH, Zürich, 2016.
[107]
J.-L. Guermond, R. Pasquetti, Entropy-based nonlinear viscosity for Fourier approximations of conservation laws, C. R. Math. Acad. Sci. Paris 346 (13–14) (2008) 801–806.
[108]
J.-L. Guermond, R. Pasquetti, B. Popov, Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys. 230 (11) (2011) 4248–4267.
[109]
V. Zingan, J.-L. Guermond, J. Morel, B. Popov, Implementation of the entropy viscosity method with the discontinuous Galerkin method, Comput. Methods Appl. Mech. Eng. 253 (2013) 479–490.
[110]
G. Carré, S.D. Pino, B. Després, E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys. 228 (2009) 5160–5183.
[111]
P. Maire, R. Abgrall, J. Breil, J. Ovadia, A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput. 29 (2007) 1781–1824.
[112]
P. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228 (2009) 2391–2425.
[113]
P. Maire, B. Nkonga, Multi–scale Godunov–type method for cell–centered discrete Lagrangian hydrodynamics, J. Comput. Phys. 228 (2009) 799–821.
[114]
W. Boscheri, R. Loubère, P. Maire, A 3D cell-centered ADER MOOD finite volume method for solving updated Lagrangian hyperelasticity on unstructured grids, J. Comput. Phys. 449 (2022).
[115]
D. Balsara, A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys. 231 (2012) 7476–7503.
[116]
D. Balsara, Three dimensional HLL Riemann solver for conservation laws on structured meshes; Application to Euler and magnetohydrodynamic flows, J. Comput. Phys. 295 (2015) 1–23.
[117]
D. Balsara, Multidimensional Riemann problem with self-similar internal structure – part I – application to hyperbolic conservation laws on structured meshes, J. Comput. Phys. 277 (2014) 163–200.
[118]
D. Balsara, M. Dumbser, Multidimensional Riemann problem with self-similar internal structure – part II – application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys. 287 (2015) 269–292.
[119]
D. Arnold, R. Falk, R. Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Eng. 198 (21) (2009) 1660–1672.
[120]
J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput. 28 (5) (2006) 1766–1797.
[121]
S. Komissarov, Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc. 382 (3) (2007) 995–1004.
[122]
H. Schlichting, K. Gersten, Boundarylayer Theory, Springer, 2016.
[123]
J. De Loera, J. Rambau, F. Santos, Triangulations: Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, Springer Berlin Heidelberg, 2010.
[124]
L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, Adv. Theory Comput. Math. 3 (2000) 269–288.
[125]
G. Dimarco, R. Loubère, V. Michel-Dansac, M.H. Vignal, Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime, J. Comput. Phys. 372 (2018) 178–201.
[126]
W. Boscheri, G. Dimarco, R. Loubère, M. Tavelli, M.H. Vignal, A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations, J. Comput. Phys. 415 (2020).
[127]
A. Thomann, G. Puppo, C. Klingenberg, An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity, J. Comput. Phys. 4201 (2020).
[128]
A. Thomann, M. Zenk, G. Puppo, C. Klingenberg, An all speed second order IMEX relaxation scheme for the Euler equations, Commun. Comput. Phys. 28 (2020) 591–620.
[129]
V. Michael-Dansac, A. Thomann, TVD–MOOD schemes based on implicit–explicit time integration, Appl. Math. Comput. 433 (2022).
[130]
H. Heumann, Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms, Ph.D. thesis ETH Zürich, 2011.
[131]
R. Abgrall, S. Busto, M. Dumbser, A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics, Appl. Math. Comput. 440 (2023).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Applied Numerical Mathematics
Applied Numerical Mathematics  Volume 198, Issue C
Apr 2024
508 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 25 June 2024

Author Tags

  1. Incompressible magnetohydrodynamics (MHD)
  2. Finite element exterior calculus (FEEC)
  3. Divergence-free schemes
  4. Compatible finite elements with a posteriori limiting
  5. Semi-implicit hybrid finite volume/finite element methods
  6. Staggered unstructured meshes

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media