Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Entropy Stable Finite Volume Scheme for Ideal Compressible MHD on 2-D Cartesian Meshes

Published: 01 January 2016 Publication History

Abstract

We present a finite volume scheme for ideal compressible magnetohydrodynamic (MHD) equations on two-dimensional Cartesian meshes. The semidiscrete scheme is constructed to be entropy stable by using the symmetrized version of the equations as introduced by Godunov. We first construct an entropy conservative scheme for which sufficient condition is given and we also derive a numerical flux satisfying this condition. Second, following a standard procedure, we make the scheme entropy stable by adding dissipative flux terms using jumps in entropy variables. A semi-discrete high resolution scheme is constructed that preserves the entropy stability of the first order scheme. We demonstrate the robustness of this new scheme on several standard MHD test cases.

References

[1]
D. S. Balsara, Divergence-free reconstruction of magnetic fields and \\!WENO\ schemes for magnetohydrodynamics, J. Comput. Phy., 228 (2009), pp. 5040--5056.
[2]
D. S. Balsara, T. Rumpf, M. Dumbser, and C.-D. Munz, Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228 (2009), pp. 2480--2516.
[3]
D. S. Balsara and D. S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phy., 149 (1999), pp. 270--292.
[4]
T. Barth, Numerical methods for gasdynamic systems on unstructured grids, in An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Kroner, Ohlberger, and Rohde, eds., Lect. Notes Comput. Sci. Eng. 5, Springer-Verlag, Berlin, 1998, pp. 198--285.
[5]
T. J. Barth, On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in Compatible Spatial Discretizations, IMA Vol. Math. Appl. 142, Springer-Verlag, New York, 2006.
[6]
F. Bouchut, C. Klingenberg, and K. Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: Theoretical framework, Numer. Math., 108 (2007), pp. 7--42.
[7]
F. Bouchut, C. Klingenberg, and K. Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation II: Numerical implementation with $3$ and $5$ waves, Numer. Math., 115 (2010), pp. 647--679.
[8]
J. Brackbill and D. Barnes, The effect of nonzero $div(B)$ on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phy., 35 (1980), pp. 426--430.
[9]
M. Brio and C. C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75 (1988), pp. 400--422.
[10]
P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14 (2013), pp. 1252--1286.
[11]
W. Dai and P. R. Woodward, An approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys., 111 (1994), pp. 354--372.
[12]
A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comp. Phy., 175 (2002), pp. 645 -- 673.
[13]
C. R. Evans and J. F. Hawley, Simulation of magnetohydrodynamic flows - A constrained transport method, Astrophy. J., 332 (1988), pp. 659--677.
[14]
L. C. Evans, Partial Differential Equations, Gra. Stud. Math., American Mathematical Society, Providence, RI, 2010.
[15]
M. Fey and M. Torrilhon, A constrained transport upwind scheme for divergence-free advection, in Hyperbolic Problems: Theory, Numerics, Applications, T. Hou and E. Tadmor, eds., Springer, Berlin, 2003, pp. 529--538.
[16]
U. S. Fjordholm, S. Mishra, and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM Journal on Numerical Analysis, 50 (2012), pp. 544--573.
[17]
U. S. Fjordholm, S. Mishra, and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phy., 230 (2011), pp. 5587--5609.
[18]
T. Gallouet and J. M. Masella, On a rough Godunov scheme, C. R., Paris Ser. I, 323 (1996), pp. 77--84.
[19]
T. A. Gardiner and J. M. Stone, An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205 (2005), pp. 509 -- 539.
[20]
E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses, Paris, 1991.
[21]
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York, 1996.
[22]
S. K. Godunov, The symmetric form of the equations for magnetohydrodynamics, in Numerical Methods for Solving Problems of Mechanics of Continuous Media, Techical report NASA - TT F-667, 1972.
[23]
K. F. Gurski, An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM Journal on Scientific Computing, 25 (2004), pp. 2165--2187.
[24]
C. Helzel, J. A. Rossmanith, and B. Taetz, An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations, J. Comput. Phys., 230 (2011), pp. 3803--3829.
[25]
F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys., 228 (2009), pp. 5410--5436.
[26]
P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and ROE methods, J. Comput. Phys., 160 (2000), pp. 649--661.
[27]
C. Klingenberg and K. Waagan, Relaxation solvers for ideal MHD equations - A review, Acta Math. Sci., 30 (2010), pp. 621--632.
[28]
P.G. LeFloch, J.M. Mercier, and C. Rohde, Fully discrete, entropy conservative schemes of arbitraryorder, SIAM Journal on Numerical Analysis, 40 (2002), pp. 1968--1992.
[29]
F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Compu., 22-23 (2005), pp. 413--442.
[30]
F. Li and L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231 (2012), pp. 2655--2675.
[31]
P. Londrillo and L. D. Zanna, High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530 (2000), pp. 508--524.
[32]
S. A. Orszag and C.-M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90 (1979), pp. 129--143.
[33]
K. Powell, An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Tech. 94-24, ICASE, NASA Langley, 1994.
[34]
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phy., 43 (1981), pp. 357--372.
[35]
P. L. Roe, Affordable, entropy consistent flux functions, in Eleventh International Conference on Hyperbolic Problems: Theory, Numerics and Applications, Lyon, oral presentation, 2006.
[36]
P. L. Roe and D. S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM Journal on Applied Mathematics, 56 (1996), pp. 57--67.
[37]
J. A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput., 28 (2006), pp. 1766--1797.
[38]
J. A. Rossmanith, High-Order Discontinuous Galerkin Finite Element Methods with Globally Divergence-Free Constrained Transport for Ideal MHD, preprint, \burlarXiv:1310.4251v1, 2013.
[39]
D. Ryu and T. Jones, Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow, Astrophys. J., 442 (1995), pp. 228--258.
[40]
D. Ryu, F. Miniati, T. W. Jones, and A. Frank, A divergence-free upwind code for multi-dimensional magnetohydrodynamic flows, Astrophy. J., 509 (1998) pp. 244--255.
[41]
C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phy, 77 (1988), pp. 439--471.
[42]
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comp., 49 (1987), pp. pp. 91--103.
[43]
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12 (2004), pp. 451--512.
[44]
Q. Tang, A. Christlieb, Y. Guclu, and J. Rossmanith, Finite difference weighted essentially non-oscillatory schemes with constrained transport for $2$D ideal magnetohydrodynamics, in Proceedings on the 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), Curran, Red Hook, NY, 2013, p.623. pp. 1--1.
[45]
M. Torrilhon, Exact Solver and Uniqueness Conditions for Riemann problems of Ideal Magnetohydrodynamics, Technical. report, 2002-06, Seminar for Applied Mathematics, ETH Zurich, Zurich 2002.
[46]
M. Torrilhon, Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics, J. Plasma Phy., 69 (2003), pp. 253--276.
[47]
G. Toth, The $div(B)=0$ constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phy., 161 (2000), pp. 605 -- 652.

Cited By

View all
  • (2024)A geometrically and thermodynamically compatible finite volume scheme for continuum mechanics on unstructured polygonal meshesJournal of Computational Physics10.1016/j.jcp.2024.112957507:COnline publication date: 15-Jun-2024
  • (2024)A divergence-free hybrid finite volume / finite element scheme for the incompressible MHD equations based on compatible finite element spaces with a posteriori limitingApplied Numerical Mathematics10.1016/j.apnum.2024.01.014198:C(346-374)Online publication date: 1-Apr-2024
  • (2024)Entropy conserving/stable schemes for a vector-kinetic model of hyperbolic systemsApplied Mathematics and Computation10.1016/j.amc.2023.128410465:COnline publication date: 15-Mar-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 54, Issue 2
DOI:10.1137/sjnaam.54.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2016

Author Tags

  1. compressible MHD
  2. symmetrization
  3. entropy stability
  4. finite volume scheme

Author Tags

  1. 65M08
  2. 65M12
  3. 65M20
  4. 76N15
  5. 76W05

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A geometrically and thermodynamically compatible finite volume scheme for continuum mechanics on unstructured polygonal meshesJournal of Computational Physics10.1016/j.jcp.2024.112957507:COnline publication date: 15-Jun-2024
  • (2024)A divergence-free hybrid finite volume / finite element scheme for the incompressible MHD equations based on compatible finite element spaces with a posteriori limitingApplied Numerical Mathematics10.1016/j.apnum.2024.01.014198:C(346-374)Online publication date: 1-Apr-2024
  • (2024)Entropy conserving/stable schemes for a vector-kinetic model of hyperbolic systemsApplied Mathematics and Computation10.1016/j.amc.2023.128410465:COnline publication date: 15-Mar-2024
  • (2024)High-Order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-Type Equation of StateJournal of Scientific Computing10.1007/s10915-023-02440-x98:2Online publication date: 11-Jan-2024
  • (2023)High order entropy preserving ADER-DG schemesApplied Mathematics and Computation10.1016/j.amc.2022.127644440:COnline publication date: 1-Mar-2023
  • (2023)A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanicsApplied Mathematics and Computation10.1016/j.amc.2022.127629440:COnline publication date: 1-Mar-2023
  • (2023)Entropy Stable Discontinuous Galerkin Schemes for Two-Fluid Relativistic Plasma Flow EquationsJournal of Scientific Computing10.1007/s10915-023-02387-z97:3Online publication date: 6-Nov-2023
  • (2022)On the theoretical foundation of overset grid methods for hyperbolic problems IIJournal of Computational Physics10.1016/j.jcp.2022.111620471:COnline publication date: 15-Dec-2022
  • (2022)A New Family of Thermodynamically Compatible Discontinuous Galerkin Methods for Continuum Mechanics and Turbulent Shallow Water FlowsJournal of Scientific Computing10.1007/s10915-022-02017-093:2Online publication date: 1-Nov-2022
  • (2019)Entropy Stable Space---Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation LawsJournal of Scientific Computing10.1007/s10915-019-00933-280:1(175-222)Online publication date: 1-Jul-2019
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media