Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Elliptic Gabriel Taubin smoothing of point clouds▪

Published: 01 August 2022 Publication History

Abstract

A point cloud smoothing algorithm is presented which is based on the mesh filtering procedure of Taubin. This is accomplished by defining a robust one-ring neighborhood for each vertex of the point cloud based on the elliptic Gabriel graph and by incorporating non-uniform Gaussian weights during the smoothing process. The proposed method is robust to noise and very simple to implement. It is able to produce high quality smoothed point clouds that avoid the shrinkage, point clustering and edge over-smoothing problems, without the use of normal information which is computationally unstable on noisy point sets. Through an extensive comparison with state-of-the-art smoothing methods the advantages of the proposed method in both free-form and CAD-oriented models are presented. A framework for efficient GPU implementation is also provided. The proposed method is able to process more than 15 million points in about 20 secs making it very suitable for point sets produced by modern 3D scanners.

Graphical abstract

Display Omitted

Highlights

A new efficient point-cloud smoothing algorithm.
A GPGPU implementation able to handle hundreds of thousands or millions of points.
An extensive comparison with state-of-the-art point-cloud filtering methods.

References

[1]
Kazhdan M.M., Bolitho M., Hoppe H., Poisson surface reconstruction, in: Sheffer A., Polthier K. (Eds.), Proceedings of the fourth eurographics symposium on geometry processing, in: ACM International conference proceeding series, vol. 256, Eurographics Association, 2006, pp. 61–70.
[2]
Pfister H., Zwicker M., van Baar J., Gross M.H., Surfels: Surface elements as rendering primitives, in: Brown J.R., Akeley K. (Eds.), Proceedings of the 27th annual conference on computer graphics and interactive techniques, ACM, 2000, pp. 335–342.
[3]
Amenta N., Bern M.W., Kamvysselis M., A new voronoi-based surface reconstruction algorithm, in: Cunningham S., Bransford W., Cohen M.F. (Eds.), Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, 1998, pp. 415–421.
[5]
Huang H., Wu S., Gong M., Cohen-Or D., Ascher U.M., Zhang H.R., Edge-aware point set resampling, ACM Trans Graph 32 (2013) 9:1–9:12.
[6]
Jones T.R., Durand F., Zwicker M., Normal improvement for point rendering, IEEE Comput Graph Appl 24 (4) (2004) 53–56.
[7]
Jones T.R., Durand F., Desbrun M., Non-iterative, feature-preserving mesh smoothing, ACM Trans Graph 22 (3) (2003) 943–949.
[8]
Taubin G., A signal processing approach to fair surface design, in: Mair S.G., Cook R. (Eds.), Proceedings of the 22nd annual conference on computer graphics and interactive techniques, ACM, 1995, pp. 351–358,.
[9]
Taubin G. Curve and surface smoothing without shrinkage. In: Proceedings of IEEE international conference on computer vision. 1995, p. 852–7.
[10]
Park J.C., Shin H., Choi B.K., Elliptic gabriel graph for finding neighbors in a point set and its application to normal vector estimation, Comput Aided Des 38 (2006) 619–626.
[11]
Han X., Jin J.S., Wang M., Jiang W., Gao L., Xiao L., A review of algorithms for filtering the 3D point cloud, Signal Process, Image Commun 57 (2017) 103–112.
[12]
Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva C., Computing and rendering point set surfaces, IEEE Trans Vis Comput Graphics 9 (2003) 3–15.
[13]
Amenta N., Kil Y.J., Defining point-set surfaces, ACM Trans Graph 23 (2004) 264–270.
[14]
Guy G., Medioni G.G., Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data, IEEE Trans Pattern Anal Mach Intell 19 (11) (1997) 1265–1277.
[15]
Öztireli A.C., Guennebaud G., Gross M.H., Feature preserving point set surfaces based on non-linear kernel regression, Comput Graph Forum 28 (2) (2009) 493–501.
[16]
Kolluri R.K., Provably good moving least squares, in: Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SIAM, 2005, pp. 1008–1017.
[17]
Takeda H., Farsiu S., Milanfar P., Kernel regression for image processing and reconstruction, IEEE Trans Image Process 16 (2) (2007) 349–366.
[18]
Lipman Y., Cohen-Or D., Levin D., Tal-Ezer H., Parameterization-free projection for geometry reconstruction, ACM Trans Graph 26 (2007) 22.
[19]
Huang H., Li D., Zhang H., Ascher U.M., Cohen-Or D., Consolidation of unorganized point clouds for surface reconstruction, ACM Trans Graph 28 (5) (2009) 176.
[21]
Sun Y., Schaefer S., Wang W., Denoising point sets via L0 minimization, Comput Aided Geom Design 35–36 (2015) 2–15.
[22]
Tomasi C., Manduchi R., Bilateral filtering for gray and color images, in: Proceedings of the sixth international conference on computer vision, IEEE Computer Society, 1998, pp. 839–846.
[23]
Fleishman S., Drori I., Cohen-Or D., Bilateral mesh denoising, ACM Trans Graph 22 (3) (2003) 950–953.
[24]
Zaman F., Wong Y., Ng B., Density-based denoising of point cloud, 2016, CoRR abs/1602.05312, URL http://arxiv.org/abs/1602.05312.
[25]
Comaniciu D., Meer P., Mean shift: A robust approach toward feature space analysis, IEEE Trans Pattern Anal Mach Intell 24 (5) (2002) 603–619.
[26]
Jia C.C., Wang C.J., Yang T., Fan B.H., He F.G., A 3D point cloud filtering algorithm based on surface variation factor classification, Procedia Comput Sci 154 (2019) 54–61,.
[27]
Linsen L., Point cloud representation, 2001, URL https://publikationen.bibliothek.kit.edu/372001.
[28]
Pauly M., Kobbelt L., Gross M., Multiresolution modeling of point-sampled geometry, Computer Science Department, ETH Zurich, Switzerland, 2002, URL https://lgg.epfl.ch/publications/2002/pauly_2002_MMP.pdf.
[29]
Desbrun M., Meyer M., Schröder P., Barr A.H., Implicit fairing of irregular meshes using diffusion and curvature flow, in: Waggenspack W.N. (Ed.), Proceedings of the 26th annual conference on computer graphics and interactive techniques, ACM, 1999, pp. 317–324.
[30]
Pauly M., Gross M.H., Spectral processing of point-sampled geometry, in: Pocock L. (Ed.), Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM, 2001, pp. 379–386.
[31]
Gortler S.J., Grzeszczuk R., Szeliski R., Cohen M.F., The lumigraph, in: Fujii J. (Ed.), Proceedings of the 23rd annual conference on computer graphics and interactive techniques, ACM, 1996, pp. 43–54.
[32]
Gonzalez R.C., Woods R.E., Digital image processing, Pearson, 2018.
[33]
Rosman G., Dubrovina A., Kimmel R., Patch-collaborative spectral point-cloud denoising, Comput Graph Forum 32 (2013) 1–12,.
[34]
Dabov K., Foi A., Katkovnik V., Egiazarian K.O., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans Image Process 16 (8) (2007) 2080–2095.
[35]
Besl P.J., McKay N.D., A method for registration of 3-D shapes, IEEE Trans Pattern Anal Mach Intell 14 (2) (1992) 239–256.
[36]
Goodfellow I.J., Bengio Y., Courville A.C., Deep learning, in: Adaptive computation and machine learning, MIT Press, ISBN 978-0-262-03561-3, 2016, URL http://www.deeplearningbook.org/.
[37]
Zhang D., Lu X., Qin H., He Y., Pointfilter: Point cloud filtering via encoder-decoder modeling, IEEE Trans Vis Comput Graph 27 (3) (2021) 2015–2027,.
[38]
Charles R.Q., Su H., Kaichun M., Guibas L.J., PointNet: Deep learning on point sets for 3D classification and segmentation, 2017,.
[39]
Lu D., Lu X., Sun Y., Wang J., Deep feature-preserving normal estimation for point cloud filtering, Comput Aided Des 125 (2020),.
[40]
Lecun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proc IEEE 86 (11) (1998) 2278–2324,.
[41]
He K., Zhang X., Ren S., Sun J., Deep residual learning for image recognition, in: 2016 IEEE conference on computer vision and pattern recognition, IEEE Computer Society, 2016, pp. 770–778.
[42]
Mattei E., Castrodad A., Point cloud denoising via moving RPCA, Comput Graph Forum 36 (2017) 123–137.
[43]
Candès E.J., Li X., Ma Y., Wright J., Robust principal component analysis?, J ACM (2011) 1–37.
[44]
Chen H., Wei M., Sun Y., Xie X., Wang J., Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint, IEEE Trans Vis Comput Graph 26 (11) (2020) 3255–3270.
[45]
Dinesh C., Cheung G., Bajic I.V., Point cloud denoising via feature graph Laplacian regularization, IEEE Trans Image Process 29 (2020) 4143–4158.
[46]
Hu W., Gao X., Cheung G., Guo Z., Feature graph learning for 3D point cloud denoising, IEEE Trans Signal Process 68 (2020) 2841–2856,.
[47]
Liu Z., Xiao X., Zhong S., Wang W., Li Y., Zhang L., et al., A feature-preserving framework for point cloud denoising, Comput Aided Des 127 (2020).
[48]
Kobbelt L., Campagna S., Vorsatz J., Seidel H., Interactive multi-resolution modeling on arbitrary meshes, in: Cunningham S., Bransford W., Cohen M.F. (Eds.), Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, 1998, pp. 105–114.
[49]
Velentzas P., Vassilakopoulos M., Corral A., A partitioning GPU-based algorithm for processing the k nearest-neighbor query, in: Chbeir R., Manolopoulos Y., Damiani E., Benslimane D., Bellatreche L., Morzy T. (Eds.), MEDES ’20: 12th international conference on management of digital ecosystems, virtual event, ACM, 2020, pp. 2–9.

Cited By

View all

Index Terms

  1. Elliptic Gabriel Taubin smoothing of point clouds▪
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computers and Graphics
          Computers and Graphics  Volume 106, Issue C
          Aug 2022
          305 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 01 August 2022

          Author Tags

          1. Point cloud
          2. Smoothing
          3. Elliptic Gabriel graph
          4. Taubin filtering

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 17 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media