Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Alternately denoising and reconstructing unoriented point sets

Published: 01 November 2023 Publication History

Abstract

We propose a new strategy to bridge point cloud denoising and surface reconstruction by alternately updating the denoised point clouds and the reconstructed surfaces. In Poisson surface reconstruction, the implicit function is generated by a set of smooth basis functions centered at the octnodes. When the octree depth is properly selected, the reconstructed surface is a good smooth approximation of the noisy point set. Our method projects the noisy points onto the surface and alternately reconstructs and projects the point set. We use the iterative Poisson surface reconstruction (iPSR) to support unoriented surface reconstruction. Our method iteratively performs iPSR and acts as an outer loop of iPSR. Considering that the octree depth significantly affects the reconstruction results, we propose an adaptive depth selection strategy to ensure an appropriate depth choice. To manage the oversmoothing phenomenon near the sharp features, we propose a λ-projection method, which means to project the noisy points onto the surface with an individual control coefficient λ i for each point. The coefficients are determined through a Voronoi-based feature detection method. Experimental results show that our method achieves high performance in point cloud denoising and unoriented surface reconstruction within different noise scales, and exhibits well-rounded performance in various types of inputs. The source code is available at https://github.com/Submanifold/AlterUpdate.

Highlights

We propose a new strategy to alternately updating the denoised point clouds and the reconstructed surfaces.
We use an adaptive octree depth selection strategy for iPSR.
We propose a λ-projection method to manage the oversmoothing of the sharp edges.
Our method achieves high performance in various situations.

Graphical abstract

Display Omitted

References

[1]
Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva C.T., Computing and rendering point set surfaces, IEEE Trans Vis Comput Graph 9 (1) (2003) 3–15.
[2]
Öztireli A.C., Guennebaud G., Gross M.H., Feature preserving point set surfaces based on non-linear kernel regression, Comput Graph Forum 28 (2) (2009) 493–501.
[3]
Cazals F., Pouget M., Estimating differential quantities using polynomial fitting of osculating jets, Comput Aided Geom Design 22 (2005) 121–146.
[4]
Cazals F., Pouget M., Jet_fitting_3: a generic C++ package for estimating the differential properties on sampled surfaces via polynomial fitting, ACM Trans Math Softw 35 (3) (2008) 24:1–24:20.
[5]
Huang Z., Carr N., Ju T., Variational implicit point set surfaces, ACM Trans Graph 38 (4) (2019) 124:1–124:13.
[6]
Lin S., Xiao D., Shi Z., Wang B., Surface reconstruction from point clouds without normals by parametrizing the Gauss formula, ACM Trans Graph (ISSN ) 42 (2) (2022) 14:1–14:19.
[7]
Hou F., Wang C., Wang W., Qin H., Qian C., He Y., Iterative Poisson surface reconstruction (iPSR) for unoriented points, ACM Trans Graph 41 (4) (2022) 128:1–128:13.
[8]
Kazhdan M.M., Hoppe H., Screened Poisson surface reconstruction, ACM Trans Graph 32 (3) (2013) 29:1–29:13.
[9]
Mérigot Q., Ovsjanikov M., Guibas L.J., Voronoi-based curvature and feature estimation from point clouds, IEEE Trans Vis Comput Graph 17 (6) (2011) 743–756.
[10]
Han X., Jin J.S., Wang M., Jiang W., Gao L., Xiao L., A review of algorithms for filtering the 3D point cloud, Signal Process, Image Commun 57 (2017) 103–112.
[11]
Zhou L., Sun G., Li Y., Li W., Su Z., Point cloud denoising review: from classical to deep learning-based approaches, Graph Model 121 (2022).
[12]
Fleishman S., Cohen-Or D., Silva C.T., Robust moving least-squares fitting with sharp features, ACM Trans Graph 24 (3) (2005) 544–552.
[13]
Guennebaud G., Gross M.H., Algebraic point set surfaces, ACM Trans Graph 26 (3) (2007) 23.
[14]
Lipman Y., Cohen-Or D., Levin D., Tal-Ezer H., Parameterization-free projection for geometry reconstruction, ACM Trans Graph 26 (3) (2007) 22.
[15]
Huang H., Li D., Zhang H., Ascher U.M., Cohen-Or D., Consolidation of unorganized point clouds for surface reconstruction, ACM Trans Graph 28 (5) (2009) 176.
[16]
Liu S., Chan K., Wang C.C.L., Iterative consolidation of unorganized point clouds, IEEE Comput Graph Appl 32 (3) (2012) 70–83.
[17]
Preiner R., Mattausch O., Arikan M., Pajarola R., Wimmer M., Continuous projection for fast L 1 reconstruction, ACM Trans Graph 33 (4) (2014) 47:1–47:13.
[18]
Huang H., Wu S., Gong M., Cohen-Or D., Ascher U.M., Zhang H.R., Edge-aware point set resampling, ACM Trans Graph 32 (1) (2013) 9:1–9:12.
[19]
Lu X., Wu S., Chen H., Yeung S., Chen W., Zwicker M., GPF: GMM-inspired feature-preserving point set filtering, IEEE Trans Vis Comput Graph 24 (8) (2018) 2315–2326.
[20]
Digne J., de Franchis C., The bilateral filter for point clouds, Image Process Line 7 (2017) 278–287.
[21]
Zhang F., Zhang C., Yang H., Zhao L., Point cloud denoising with principal component analysis and a novel bilateral filter, Trait Signal 36 (5) (2019) 393–398.
[22]
Avron H., Sharf A., Greif C., Cohen-Or D., l 1-Sparse reconstruction of sharp point set surfaces, ACM Trans Graph 29 (5) (2010) 135:1–135:12.
[23]
Sun Y., Schaefer S., Wang W., Denoising point sets via L 0 minimization, Comput Aided Geom Design 35–36 (2015) 2–15.
[24]
Agathos A., Azariadis P.N., Kyratzi S., Elliptic gabriel taubin smoothing of point clouds, Comput Graph 106 (2022) 20–32.
[25]
Salman N., Yvinec M., Mérigot Q., Feature preserving mesh generation from 3D point clouds, Comput Graph Forum 29 (5) (2010) 1623–1632.
[26]
Digne J., Cohen-Steiner D., Alliez P., de Goes F., Desbrun M., Feature-preserving surface reconstruction and simplification from defect-laden point sets, J Math Imaging Vision 48 (2) (2014) 369–382.
[27]
Wang J., Yu Z., Zhu W., Cao J., Feature-preserving surface reconstruction from unoriented, noisy point data, Comput Graph Forum 32 (1) (2013) 164–176.
[28]
Liu Z., Xiao X., Zhong S., Wang W., Li Y., Zhang L., et al., A feature-preserving framework for point cloud denoising, Comput Aided Des 127 (2020).
[29]
Chen S., Wang J., Pan W., Gao S., Wang M., Lu X., Towards uniform point distribution in feature-preserving point cloud filtering, Comput Vis Media 9 (2) (2023) 249–263.
[30]
Xu R., Wang Z., Dou Z., Zong C., Xin S., Jiang M., et al., RFEPS: reconstructing feature-line equipped polygonal surface, ACM Trans Graph 41 (6) (2022) 228:1–228:15.
[31]
Yu L., Li X., Fu C., Cohen-Or D., Heng P., EC-net: an edge-aware point set consolidation network, in: Computer vision - ECCV 2018 - 15th European conference, in: Lecture notes in computer science, vol. 11211, Springer, 2018, pp. 398–414.
[32]
Rakotosaona M., Barbera V.L., Guerrero P., Mitra N.J., Ovsjanikov M., PointCleanNet: learning to denoise and remove outliers from dense point clouds, Comput Graph Forum 39 (1) (2020) 185–203.
[33]
Erler P., Guerrero P., Ohrhallinger S., Mitra N.J., Wimmer M., Points2Surf: learning implicit surfaces from point clouds, in: Computer vision - ECCV 2020 - 16th European conference, in: Lecture notes in computer science, 12350, Springer, 2020, pp. 108–124.
[34]
Boulch A., ConvPoint: continuous convolutions for point cloud processing, Comput Graph 88 (2020) 24–34.
[35]
Zhang D., Lu X., Qin H., He Y., Pointfilter: point cloud filtering via encoder-decoder modeling, IEEE Trans Vis Comput Graph 27 (3) (2021) 2015–2027.
[36]
Huang A., Xie Q., Wang Z., Lu D., Wei M., Wang J., MODNet: multi-offset point cloud denoising network customized for multi-scale patches, Comput Graph Forum 41 (7) (2022) 109–119.
[37]
Liu Z., Zhan S., Zhao Y., Liu Y., Chen R., He Y., PCDNF: revisiting learning-based point cloud denoising via joint normal filtering, 2022, CoRR abs/2209.00798, arXiv:2209.00798.
[38]
de Silva Edirimuni D., Lu X., Shao Z., Li G., Robles-Kelly A., He Y., IterativePFN: true iterative point cloud filtering, 2023, CoRR abs/2304.01529, arXiv:2304.01529.
[39]
Alliez P., Cohen-Steiner D., Tong Y., Desbrun M., Voronoi-based variational reconstruction of unoriented point sets, in: Proceedings of the fifth Eurographics symposium on geometry processing, in: ACM international conference proceeding series, vol. 257, Eurographics Association, 2007, pp. 39–48.
[40]
Mullen P., de Goes F., Desbrun M., Cohen-Steiner D., Alliez P., Signing the unsigned: robust surface reconstruction from raw pointsets, Comput Graph Forum 29 (5) (2010) 1733–1741.
[41]
Giraudot S., Cohen-Steiner D., Alliez P., Noise-adaptive shape reconstruction from raw point sets, Comput Graph Forum 32 (5) (2013) 229–238.
[42]
Peng S., Jiang C., Liao Y., Niemeyer M., Pollefeys M., Geiger A., Shape as points: a differentiable Poisson solver, in: Advances in neural information processing systems, 2021, pp. 13032–13044.
[43]
Kazhdan M.M., Bolitho M., Hoppe H., Poisson surface reconstruction, in: Proceedings of the fourth Eurographics symposium on geometry processing, in: ACM international conference proceeding series, vol. 256, Eurographics Association, 2006, pp. 61–70.
[44]
Pearson K., On lines and planes of closest fit to systems of points in space, Phil Mag 2 (11) (1901) 559–572.
[45]
Hoppe H., DeRose T., Duchamp T., McDonald J.A., Stuetzle W., Surface reconstruction from unorganized points, in: Proceedings of the 19th annual conference on computer graphics and interactive techniques, ACM, 1992, pp. 71–78.
[46]
Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F., Ranzuglia G., MeshLab: an open-source mesh processing tool, in: Eurographics Italian chapter conference 2008, Eurographics, 2008, pp. 129–136.
[48]
Qi C.R., Su H., Mo K., Guibas L.J., PointNet: deep learning on point sets for 3D classification and segmentation, in: IEEE conference on computer vision and pattern recognition, IEEE Computer Society, 2017, pp. 77–85.
[49]
Huang Z., Wen Y., Wang Z., Ren J., Jia K., Surface reconstruction from point clouds: a survey and a benchmark, 2022, CoRR abs/2205.02413, arXiv:2205.02413.
[50]
Gschwandtner M., Kwitt R., Uhl A., Pree W., BlenSor: blender sensor simulation toolbox, in: Advances in visual computing - 7th international symposium, in: Lecture notes in computer science, vol. 6939, Springer, 2011, pp. 199–208.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computers and Graphics
Computers and Graphics  Volume 116, Issue C
Nov 2023
518 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 November 2023

Author Tags

  1. Point cloud denoising
  2. Poisson surface reconstruction
  3. Projection-based denoising

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media