Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Binary segmentation of medical images using implicit spline representations and deep learning

Published: 01 February 2021 Publication History

Abstract

We propose a novel approach to image segmentation based on combining implicit spline representations with deep convolutional neural networks. This is done by predicting the control points of a bivariate spline function whose zero-set represents the segmentation boundary. We adapt several existing neural network architectures and design novel loss functions that are tailored towards providing implicit spline curve approximations. The method is evaluated on a congenital heart disease computed tomography medical imaging dataset. Experiments are carried out by measuring performance in various standard metrics for different networks and loss functions. We determine that splines of bidegree ( 1, 1 ) with 128 × 128 coefficient resolution performed optimally for 512 × 512 resolution CT images. For our best network, we achieve an average volumetric test Dice score of close to 92%, which reaches the state of the art for this congenital heart disease dataset.

References

[1]
D. Acuna, H. Ling, A. Kar, S. Fidler, Efficient interactive annotation of segmentation datasets with polygon-RNN++, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 859–868.
[2]
G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations or shape gradients?, SIAM J. Appl. Math. 63 (2003) 2128–2154.
[3]
Barrowclough, O.J.D.; Muntingh, G.; Stangeby, I. (2020): Implicit reconstruction. https://github.com/sintefmath/implicit-recon/.
[4]
L. Castrejón, K. Kundu, R. Urtasun, S. Fidler, Annotating object instances with a polygon-RNN, in: CVPR, 2017.
[5]
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
[6]
M. Fey, J. Eric Lenssen, F. Weichert, H. Müller, SplineCNN: fast geometric deep learning with continuous B-spline kernels, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 869–877.
[7]
E. Gibson, F. Giganti, Y. Hu, E. Bonmati, S. Bandula, K. Gurusamy, B. Davidson, S.P. Pereira, M.J. Clarkson, D.C. Barratt, Automatic multi-organ segmentation on abdominal CT with dense V-networks, IEEE Trans. Med. Imaging 37 (2018) 1822–1834.
[8]
M. Habijan, H. Leventić, I. Galić, D. Babin, Whole heart segmentation from CT images using 3D U-net architecture, in: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), 2019, pp. 121–126,.
[9]
A. Işın, C. Direkoğlu, M. Şah, Review of MRI-based brain tumor image segmentation using deep learning methods, in: 12th International Conference on Application of Fuzzy Systems and Soft Computing, in: Procedia Computer Science, vol. 102, ICAFS 2016, Vienna, Austria, 29–30 August 2016, 2016, pp. 317–324,.
[10]
D. Karimi, S.E. Salcudean, Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks, IEEE Trans. Med. Imaging 39 (2020) 499–513.
[11]
Keskin, C.; Izadi, S. (2018): SplineNets: continuous neural decision graphs. ArXiv preprint arXiv:1810.13118.
[12]
P. Laube, M.O. Franz, G. Umlauf, Deep learning parametrization for B-spline curve approximation, in: 2018 International Conference on 3D Vision (3DV), IEEE, 2018, pp. 691–699.
[13]
H. Ling, J. Gao, A. Kar, W. Chen, S. Fidler, Fast interactive object annotation with curve-GCN, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5257–5266.
[14]
M. Michalkiewicz, J.K. Pontes, D. Jack, M. Baktashmotlagh, A. Eriksson, Implicit surface representations as layers in neural networks, in: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4742–4751,.
[15]
Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. (2020): Image segmentation using deep learning: a survey. CoRR abs/2001.05566 https://arxiv.org/abs/2001.05566.
[16]
C. Payer, D. Štern, H. Bischof, M. Urschler, Multi-label whole heart segmentation using CNNs and anatomical label configurations, in: M. Pop, M. Sermesant, P.M. Jodoin, A. Lalande, X. Zhuang, G. Yang, A. Young, O. Bernard (Eds.), Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges, Springer International Publishing, Cham, 2018, pp. 190–198.
[17]
D.L. Pham, C. Xu, J.L. Prince, Current methods in medical image segmentation, Annu. Rev. Biomed. Eng. 2 (2000) 315–337,.
[18]
O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015, pp. 234–241.
[19]
N. Sharma, L. Aggarwal, Automated medical image segmentation techniques, J. Med. Phys. 35 (2010) 3–14,.
[20]
Simonyan, K.; Zisserman, A. (2014): Very deep convolutional networks for large-scale image recognition. ArXiv preprint arXiv:1409.1556.
[21]
Sitzmann, V.; Martel, J.N.; Bergman, A.W.; Lindell, D.B.; Wetzstein, G. (2020): Implicit neural representations with periodic activation functions. ArXiv preprint arXiv:2006.09661.
[22]
I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, in: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, JMLR.org, 2013, pp. 1139–1147.
[23]
Varatharajan, N., Lippert, M., Brun, H., Elle, O.J., Kumar, R.P., 2020. Deep learning based blood pool segmentation of congenital heart disease. Submitted for publication.
[24]
C. Wang, Ö. Smedby, Automatic whole heart segmentation using deep learning and shape context, in: M. Pop, M. Sermesant, P.M. Jodoin, A. Lalande, X. Zhuang, G. Yang, A. Young, O. Bernard (Eds.), Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges, Springer International Publishing, Cham, 2018, pp. 242–249.
[25]
Q. Xu, W. Wang, D. Ceylan, R. Mech, U. Neumann, DISN: deep implicit surface network for high-quality single-view 3D reconstruction, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 492–502.
[26]
X. Xu, T. Wang, Y. Shi, H. Yuan, Q. Jia, M. Huang, J. Zhuang, Whole heart and great vessel segmentation in congenital heart disease using deep neural networks and graph matching, in: Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019,.
[27]
Xu, Z.; Wu, Z.; Feng, J. (2018): CFUN: combining faster R-CNN and U-net network for efficient whole heart segmentation. CoRR abs/1812.04914 http://arxiv.org/abs/1812.04914.
[28]
H. Yang, M. Fuchs, B. Juttler, O. Scherzer, Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation, in: IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06), IEEE, 2006, p. 37.

Index Terms

  1. Binary segmentation of medical images using implicit spline representations and deep learning
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Computer Aided Geometric Design
          Computer Aided Geometric Design  Volume 85, Issue C
          Feb 2021
          127 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 February 2021

          Author Tags

          1. Implicit spline representations
          2. Shape modelling
          3. Deep learning
          4. Medical imaging
          5. Image segmentation

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 03 Sep 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media