Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Parameterization for polynomial curve approximation via residual deep neural networks

Published: 01 February 2021 Publication History

Abstract

Finding the optimal parameterization for fitting a given sequence of data points with a parametric curve is a challenging problem that is equivalent to solving a highly non-linear system of equations. In this work, we propose the use of a residual neural network to approximate the function that assigns to a sequence of data points a suitable parameterization for fitting a polynomial curve of a fixed degree. Our model takes as an input a small fixed number of data points and the generalization to arbitrary data sequences is obtained by performing multiple evaluations. We show that the approach compares favorably to classical methods in a number of numerical experiments that include the parameterization of polynomial as well as non-polynomial data.

References

[1]
M. Antonelli, C.V. Beccari, G. Casciola, High quality local interpolation by composite parametric surfaces, Comput. Aided Geom. Des. 46 (2016) 103–124.
[2]
C. Balta, S. Öztürk, M. Kuncan, I. Kandilli, Dynamic centripetal parameterization method for B-spline curve interpolation, IEEE Access 8 (2020) 589–598.
[3]
M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Process. Mag. 34 (2017) 18–42.
[4]
D. Chen, F. Hu, G. Nian, T. Yang, Deep residual learning for nonlinear regression, Entropy 22 (2020) 193.
[5]
J.J. Fang, C.L. Hung, An improved parameterization method for B-spline curve and surface interpolation, Comput. Aided Des. 45 (2013) 1005–1028.
[6]
R.T. Farouki, F. Pelosi, M.L. Sampoli, Approximation of monotone clothoid segments by degree 7 Pythagorean-hodograph curves, J. Comput. Appl. Math. 382 (2021) 16.
[7]
M.S. Floater, On the deviation of a parametric cubic spline interpolant from its data polygon, Comput. Aided Geom. Des. 25 (2008) 148–156.
[8]
M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, in: N. Dogson, M.S. Floater, M. Sabin (Eds.), Advances in Multiresolution for Geometric Modelling, in: Mathematics and Visualization, Springer, Berlin, Heidelberg, 2005, pp. 157–186.
[9]
M.S. Floater, T. Surazhsky, Parameterization for curve interpolation, in: K. Jetter, M.D. Buhmann, W. Haussmann, R. Schaback, J. Stöckler (Eds.), Topics in Multivariate Approximation and Interpolation, in: Studies in Computational Mathematics, vol. 12, Elsevier, 2006, pp. 39–54.
[10]
Gao, J.; Tang, C.; Ganapathi-Subramanian, V.; Huang, J.; Su, H.; Guibas, L.J. (2019): Deepspline: data-driven reconstruction of parametric curves and surfaces. arXiv:1901.03781.
[11]
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
[12]
J. Hoschek, Intrinsic parametrization for approximation, Comput. Aided Geom. Des. 5 (1988) 27–31.
[13]
K. Höllig, J. Koch, Geometric Hermite interpolation with maximal order and smoothness, Comput. Aided Geom. Des. 13 (1996) 681–695.
[14]
A. Iglesias, A. Gálvez, M. Collantes, Bat algorithm for curve parameterization in data fitting with polynomial Bézier curves, in: 2015 International Conference on Cyberworlds (CW), 2015, pp. 107–114.
[15]
A. Iglesias, A. Gálvez, M. Collantes, Four adaptive memetic bat algorithm schemes for Bézier curve parameterization, in: M. Gavrilova, C. Tan, A. Sourin (Eds.), Transactions on Computational Science XXVIII, in: Lecture Notes in Computer Science, vol. 9590, Springer, Berlin, Heidelberg, 2016, pp. 127–145.
[16]
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: F. Bach, D. Blei (Eds.), International Conference on Machine Learning, PMLR, Lille, France, 2015, pp. 448–456.
[17]
G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, On geometric interpolation by planar parametric polynomial curves, Math. Comput. 76 (2007) 1981–1993.
[18]
Kingma, D.P.; Ba, J. (2014): Adam: a method for stochastic optimization. arXiv:1412.6980.
[19]
P. Laube, M.O. Franz, G. Umlauf, Deep learning parametrization for B-spline curve approximation, in: 2018 International Conference on 3D Vision (3DV), IEEE, 2018, pp. 691–699.
[20]
E. Lee, Choosing nodes in parametric curve interpolation, Comput. Aided Des. 21 (1989) 363–370.
[21]
C.G. Lim, A universal parametrization in B-spline curve and surface interpolation, Comput. Aided Geom. Des. 16 (1999) 407–422.
[22]
C.G. Lim, Universal parametrization in constructing smoothly-connected B-spline surfaces, Comput. Aided Geom. Des. 19 (2002) 465–478.
[23]
A. Rababah, High order approximation method for curves, Comput. Aided Geom. Des. 12 (1995) 89–102.
[24]
E. Saux, M. Daniel, An improved Hoschek intrinsic parametrization, Comput. Aided Geom. Des. 20 (2003) 513–521.
[25]
T. Speer, M. Kuppe, J. Hoschek, Global reparametrization for curve approximation, Comput. Aided Geom. Des. 15 (1998) 869–877.
[26]
A. Vavpetič, Optimal parametric interpolants of circular arcs, Comput. Aided Geom. Des. 80 (2020) 8.
[27]
W. Wang, H. Pottmann, Y. Liu, Fitting B-spline curves to point clouds by curvature-based squared distance minimization, ACM Trans. Graph. 25 (2006) 214–238.
[28]
H. Yang, W. Wang, J. Sun, Control point adjustment for B-spline curve approximation, Comput. Aided Des. 36 (2004) 639–652.
[29]
J. Yang, D. Wang, H. Hong, Improving angular speed uniformity by reparameterization, Comput. Aided Geom. Des. 30 (2013) 636–652.

Cited By

View all
  • (2024)Computing nodes for plane data points by constructing cubic polynomial with constraintsComputer Aided Geometric Design10.1016/j.cagd.2024.102308111:COnline publication date: 1-Jun-2024
  • (2024)Simultaneous Boundary and Interior Parameterization of Planar Domains Via Deep LearningComputer-Aided Design10.1016/j.cad.2023.103621166:COnline publication date: 1-Jan-2024
  • (2024)InceptCurves: curve reconstruction using an inception networkThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03477-140:7(4805-4815)Online publication date: 1-Jul-2024

Index Terms

  1. Parameterization for polynomial curve approximation via residual deep neural networks
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Computer Aided Geometric Design
        Computer Aided Geometric Design  Volume 85, Issue C
        Feb 2021
        127 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 February 2021

        Author Tags

        1. Parameterization
        2. Curve fitting
        3. Deep learning

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 06 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Computing nodes for plane data points by constructing cubic polynomial with constraintsComputer Aided Geometric Design10.1016/j.cagd.2024.102308111:COnline publication date: 1-Jun-2024
        • (2024)Simultaneous Boundary and Interior Parameterization of Planar Domains Via Deep LearningComputer-Aided Design10.1016/j.cad.2023.103621166:COnline publication date: 1-Jan-2024
        • (2024)InceptCurves: curve reconstruction using an inception networkThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03477-140:7(4805-4815)Online publication date: 1-Jul-2024
        • (2022)A Review of 3D Point Clouds Parameterization MethodsComputational Science – ICCS 202210.1007/978-3-031-08757-8_57(690-703)Online publication date: 21-Jun-2022

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media