Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Comparing shapes through multi-scale approximations of the matching distance

Published: 01 April 2014 Publication History

Abstract

Two of the main ingredients of topological persistence for shape comparison are persistence diagrams and the matching distance. Persistence diagrams are signatures capturing meaningful properties of shapes, while the matching distance can be used to stably compare them. From the application viewpoint, one drawback of these tools is the computational cost for evaluating the matching distance. In this paper we introduce a new framework for the matching distance estimation: It preserves the reliability of the entire approach in comparing shapes, extremely reducing the computational cost. Theoretical results are supported by experiments on 3D-models.

References

[1]
Bentley, J.L., Multidimensional binary search trees used for associative searching. Commun. ACM. v18 i9. 509-517.
[2]
Biasotti, S., Bai, X., Bustos, B., Cerri, A., Giorgi, D., Li, L., Mortara, M., Sipiran, I., Zhang, S. and Spagnuolo, M., SHREC'12 track: stability on abstract shapes. In: Spagnuolo, M., Bronstein, M., Bronstein, A., Ferreira, A. (Eds.), Eurographics Workshop on 3D Object Retrieval, Eurographics Association. pp. 101-107.
[3]
Biasotti, S., Cerri, A., Frosini, P. and Giorgi, D., A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recognit. Lett. v32 i14. 1735-1746.
[4]
Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L. and Spagnuolo, M., Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. v40 i4. 1-87.
[5]
Biasotti, S., Giorgi, D., Spagnuolo, M. and Falcidieno, B., Size functions for comparing 3d models. Pattern Recognit. v41 i9. 2855-2873.
[6]
Bronstein, A.M., Bronstein, M.M. and Kimmel, R., Numerical Geometry of Non-Rigid Shapes. 2008. 1 edition. Springer Publishing Company, Incorporated.
[7]
Bronstein, A.M., Bronstein, M.M., Ovsjanikov, M. and Guibas, L.J., Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graphics (TOG). v30 i1. 1-20.
[8]
Cagliari, F. and Landi, C., Finiteness of rank invariants of multidimensional persistent homology groups. Appl. Math. Lett. v24 i4. 516-518.
[9]
Carlsson, G., Zomorodian, A., Collins, A. and Guibas, L.J., Persistence barcodes for shapes. IJSM. v11 i2. 149-187.
[10]
Cerri, A., Di Fabio, B. and Medri, F., Multi-scale approximation of the matching distance for shape retrieval. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (Eds.), vol. 7309, Lecture Notes in Computer Science. Springer. pp. 128-138.
[11]
Cerri, A., Ferri, M. and Giorgi, D., Retrieval of trademark images by means of size functions. Graph. Models. v68 i5. 451-471.
[12]
Cerri, A., Giorgi, D., Musé, P., Sur, F. and Tomassini, F., Shape recognition via an a contrario model for size functions. In: Campilho, A., Kamel, M. (Eds.), Lecture Notes in Computer Science, vol. 4142. Springer, Berlin Heidelberg. pp. 410-421.
[13]
Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F. and Oudot, S., Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graphics Forum. v28 i5. 1393-1403.
[14]
Cohen-Steiner, D., Edelsbrunner, H. and Harer, J., Stability of persistence diagrams. Discr. Comput. Geom. v37 i1. 103-120.
[15]
Cohen-Steiner, D., Edelsbrunner, H. and Harer, J., Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. v9 i1. 79-103.
[16]
Crow, F.C., Summed-area tables for texture mapping. In: ACM SIGGRAPH Computer Graphics, vol. 18. ACM. pp. 207-212.
[17]
d'Amico, M., Frosini, P. and Landi, C., Using matching distance in size theory: a survey. Int. J. Imag. Syst. Tech. v16 i5. 154-161.
[18]
d'Amico, M., Frosini, P. and Landi, C., Natural pseudo-distance and optimal matching between reduced size functions. Acta. Appl. Math. v109. 527-554.
[19]
Di Fabio, B. and Landi, C., Persistent homology and partial similarity of shapes. Pattern Recognit. Lett. v33 i11. 1445-1450.
[20]
B. Di Fabio, C. Landi, F. Medri, Recognition of occluded shapes using size functions, in: Lecture Notes in Computer Science, vol. 5716, 2009, pp. 642-651.
[21]
Persistent homology-a survey. In: Contemp. Math, vol. 453. Amer. Math. Soc., Providence, RI. pp. 257-282.
[22]
Edelsbrunner, H. and Harer, J., Computational Topology - An Introduction. 2010. American Mathematical Society.
[23]
Ferri, M. and Stanganelli, I., Size functions for the morphological analysis of melanocytic lesions. Int. J. Biomed. Imaging.
[24]
Frosini, P. and Landi, C., Size theory as a topological tool for computer vision. Pattern Recognit. Image Anal. v9. 596-603.
[25]
Frosini, P. and Landi, C., Size functions and formal series. Appl. Algebra Eng. Commun. Comput. v12 i4. 327-349.
[26]
Frosini, P. and Landi, C., Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval. Pattern Recognit. Lett. v34 i8. 863-872.
[27]
M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3d shapes. in: SIGGRAPH '01, 2001, pp. 203-212.
[28]
M.J. Jones, P. Viola, Robust real-time object detection, in: Workshop on Statistical and Computational Theories of Vision, 2001.
[29]
Kincaid, D. and Cheney, E., Numerical Analysis: Mathematics of Scientific Computing, Pure and Applied Undergraduate Texts. 2002. American Mathematical Society.
[30]
M. Lesnick, The optimality of the interleaving distance on multidimensional persistence modules, 2011. <http://arxiv.org/abs/1106.5305>.
[31]
Micheletti, A. and Landini, G., Size functions applied to the statistical shape analysis and classification of tumor cells. In: Bonilla, L., Moscoso, M., Platero, G., Vega, J. (Eds.), Mathematics in Industry, vol. 12. Springer, Berlin Heidelberg. pp. 538-542.
[32]
Smeulders, A., Worring, M., Santini, S., Gupta, A. and Jain, R., Content-based image retrieval at the end of the early years. IEEE Trans. PAMI. v22 i12.
[33]
J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, in: Proc. SGP '09, 2009, pp. 1383-1392.
[34]
Tangelder, J. and Veltkamp, R., A survey of content-based 3D shape retrieval methods. Multimedia Tools Appl. v39 i3. 441-471.

Cited By

View all
  • (2020)Spatiotemporal Persistent Homology for Dynamic Metric SpacesDiscrete & Computational Geometry10.1007/s00454-019-00168-w66:3(831-875)Online publication date: 2-Feb-2020
  • (2016)A discrete morse-based approach to multivariate data analysisSIGGRAPH ASIA 2016 Symposium on Visualization10.1145/3002151.3002166(1-8)Online publication date: 28-Nov-2016
  • (2016)Designing a Topological Algorithm for 3D Activity RecognitionProceedings of the 6th International Workshop on Computational Topology in Image Context - Volume 966710.1007/978-3-319-39441-1_18(193-203)Online publication date: 15-Jun-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Computer Vision and Image Understanding
Computer Vision and Image Understanding  Volume 121, Issue
April, 2014
119 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 April 2014

Author Tags

  1. Bottleneck distance
  2. Dissimilarity criterion
  3. Persistence diagram
  4. Shape analysis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Spatiotemporal Persistent Homology for Dynamic Metric SpacesDiscrete & Computational Geometry10.1007/s00454-019-00168-w66:3(831-875)Online publication date: 2-Feb-2020
  • (2016)A discrete morse-based approach to multivariate data analysisSIGGRAPH ASIA 2016 Symposium on Visualization10.1145/3002151.3002166(1-8)Online publication date: 28-Nov-2016
  • (2016)Designing a Topological Algorithm for 3D Activity RecognitionProceedings of the 6th International Workshop on Computational Topology in Image Context - Volume 966710.1007/978-3-319-39441-1_18(193-203)Online publication date: 15-Jun-2016
  • (2015)Stable topological signatures for points on 3D shapesProceedings of the Eurographics Symposium on Geometry Processing10.1111/cgf.12692(1-12)Online publication date: 6-Jul-2015
  • (2015)Persistent Homology for the Evaluation of Dimensionality Reduction SchemesComputer Graphics Forum10.1111/cgf.1265534:3(431-440)Online publication date: 1-Jun-2015

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media