A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization
Abstract
References
Recommendations
On the Rank of Disjunctive Cuts
Let L be a family of lattice-free polyhedra in Rm containing the splits. Given a polyhedron P in Rm + n, we characterize when a valid inequality for P ∩ (Zm × Rn) can be obtained with a finite number of disjunctive cuts corresponding to the polyhedra in ...
Conic mixed-integer rounding cuts
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined ...
Disjunctive cuts in Mixed-Integer Conic Optimization
AbstractThis paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Building on conic duality, we formulate a cut-generating conic program for separating disjunctive cuts, and investigate the impact of the normalization condition on ...
Comments
Information & Contributors
Information
Published In
Publisher
Elsevier Science Publishers B. V.
Netherlands
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0