Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Tetrahedral and hexahedral invertible finite elements

Published: 01 March 2006 Publication History

Abstract

We review an algorithm for the finite element simulation of elastoplastic solids which is capable of robustly and efficiently handling arbitrarily large deformation. In fact, the model remains valid even when large parts of the mesh are inverted. The algorithm is straightforward to implement and can be used with any material constitutive model, and for both volumetric solids and thin shells such as cloth. We also discuss a mechanism for controlling plastic deformation, which allows a deformable object to be guided towards a desired final shape without sacrificing realistic behavior, and an improved method for rigid body collision handling in the context of mixed explicit/implicit time-stepping. Finally, we present a novel extension of our method to arbitrary element types including specific details for hexahedral elements.

References

[1]
{1} C. Hirt, A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 135 (1974) 227-253.
[2]
{2} G. Camacho, M. Ortiz, Adaptive Lagrangian modelling of ballistic penetration of metallic targets, Comput. Meth. Appl. Mech. Eng. 142 (1997) 269-301.
[3]
{3} H. Espinosa, P. Zavattieri, G. Emore, Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure, Mech. Mater. 29 (1998) 275-305.
[4]
{4} G. Bessette, E. Becker, L. Taylor, D. Littlefield, Modeling of impact problems using an h-adaptive, explicit Lagrangian finite element method in three dimensions, Comput. Meth. Appl. Mech. Eng. 192 (2003) 1649-1679.
[5]
{5} P. Vachal, R. Garimella, M. Shashkov, Untangling of 2D meshes in ALE simulation, J. Comput. Phys. 196 (2004) 627-644.
[6]
{6} J. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J. González-Yuste, Simultaneous untangling and smoothing of tetrahedral meshes, Comput. Meth. Appl. Mech. Eng. 192 (2003) 2775-2787.
[7]
{7} N. Molino, R. Bridson, J. Teran, R. Fedkiw, A crystalline, red green strategy for meshing highly deformable objects with tetrahedra, in: 12th International Meshing Roundtable, 2003, pp. 103-114.
[8]
{8} R. Kautzman, A. Maiolo, D. Griffin, A. Bueker, Jiggly bits and motion retargetting: bringing the motion of hyde to life in Van Helsing with dynamics, in: SIGGRAPH 2004 Sketches and Applications, ACM Press, New York, 2004.
[9]
{9} M. Teschner, B. Heidelberger, M. Muller, M. Gross, A versatile and robust model for geometrically complex deformable solids, in: Proceedings of the Computer Graphics International, 2004.
[10]
{10} M. Muller, M. Gross, Interactive virtual materials, in: Graph. Interface, 2004.
[11]
{11} G. Irving, J. Teran, R. Fedkiw, Invertible finite elements for robust simulation of large deformation, in: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2004, pp. 131-140.
[12]
{12} D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, Comput. Graph. (Proc. SIGGRAPH 87) 21 (4) (1987) 205-214.
[13]
{13} D. Terzopoulos, K. Fleischer, Modeling inelastic deformation: viscoelasticity, plasticity, fracture, Comput. Graph. (SIGGRAPH Proc.) (1998) 269-278.
[14]
{14} D. Terzopoulos, K. Fleischer, Deformable models, Visual Comput. (4) (1988) 306-331.
[15]
{15} J.-P. Gourret, N. Magnenat-Thalmann, D. Thalmann, Simulation of object and human skin deformations in a grasping task, Comput. Graph. (SIGGRAPH Proc.) (1989) 21-30.
[16]
{16} D. Chen, D. Zeltzer, Pump it up: computer animation of a biomechanically based model of muscle using the finite element method, Comput. Graph. (SIGGRAPH Proc.) (1992) 89-98.
[17]
{17} G. Picinbono, H. Delingette, N. Ayache, Non-linear and anisotropic elastic soft tissue models for medical simulation, in: IEEE International Conference on Robot. and Automation, 2001.
[18]
{18} Q. Zhu, Y. Chen, A. Kaufman, Real-time biomechanically-based muscle volume deformation using FEM, Comput. Graph. Forum 190 (3) (1998) 275-284.
[19]
{19} G. Hirota, S. Fisher, A. State, C. Lee, H. Fuchs, An implicit finite element method for elastic solids in contact, in: Proceedings of the Computer Animation, 2001, pp. 136-146.
[20]
{20} J. O'Brien, J. Hodgins. Graphical modeling and animation of brittle fracture, in: Proceedings of the SIGGRAPH 99, vol. 18, 1999, pp. 137-146.
[21]
{21} J. O'Brien, A. Bargteil, J. Hodgins, Graphical modeling of ductile fracture, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 291-294.
[22]
{22} G. Yngve, J. O'Brien, J. Hodgins, Animating explosions, in: Proceedings of the SIGGRAPH 2000, vol. 19, 2000, pp. 29-36.
[23]
{23} M. Muller, L. McMillan, J. Dorsey, R. Jagnow. Real-time simulation of deformation and fracture of stiff materials, in: Comput. Anim. Sim. '01, Proceedings of the Eurographics Workshop, Eurographics Association, 2001, pp. 99-111.
[24]
{24} G. Debunne, M. Desbrun, M. Cani, A. Barr, Dynamic real-time deformations using space and time adaptive sampling, in: Proceedings of the SIGGRAPH 2001, vol. 20, 2001, pp. 31-36.
[25]
{25} M. Muller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler. Stable real-time deformations, in: ACM SIGGRAPH Symposium on Computer Animation, 2002, pp. 49-54.
[26]
{26} S. Capell, S. Green, B. Curless, T. Duchamp, Z. Popović, Interactive skeleton-driven dynamic deformations, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 586-593.
[27]
{27} S. Capell, S. Green, B. Curless, T. Duchamp, Z. Popović, A multiresolution framework for dynamic deformations, in: ACM SIGGRAPH Symposium on Computer Animation, ACM Press, New York, 2002, pp. 41-48.
[28]
{28} J. Teran, S. Blemker, V. Ng, R. Fedkiw, Finite volume methods for the simulation of skeletal muscle, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 68-74.
[29]
{29} D. James, D. Pai, DyRT: dynamic response textures for real time deformation simulation with graphics hardware, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 582-585.
[30]
{30} D. James, K. Fatahalian, Precomputing interactive dynamic deformable scenes, ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003) 879-887.
[31]
{31} B. Palmerio, An attraction-repulsion mesh adaption model for flow solution on unstructured grids, Comput. Fluids 23 (3) (1994) 487-506.
[32]
{32} D. Bourguignon, M.P. Cani, Controlling anisotropy in mass-spring systems, in: Eurographics, Eurographics Association, 2000, pp. 113-123.
[33]
{33} L. Cooper, S. Maddock, Preventing collapse within mass-spring-damper models of deformable objects, in: The 5th International Conference in Central Europe on Computer Graphics and Vis., 1997.
[34]
{34} O. Etzmuss, M. Keckeisen, W. Strasser, A fast finite element solution for cloth modelling, in: Pacific Graph., 2003, pp. 244-251.
[35]
{35} R. Bridson, S. Marino, R. Fedkiw, Simulation of clothing with folds and wrinkles, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 28-36.
[36]
{36} E. Grinspun, A. Hirani, M. Desbrun, P. Schroder, Discrete shells, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 62-67.
[37]
{37} R. Bridson, R. Fedkiw, J. Anderson, Robust treatment of collisions, contact and friction for cloth animation, ACM Trans. Graph.(SIGGRAPH Proc.) 21 (2002) 594-603.
[38]
{38} D. Baraff, A. Witkin, Large steps in cloth simulation, in: Proceedings of the SIGGRAPH 98, 1998, pp. 1-12.
[39]
{39} K.-J. Choi, H.-S. Ko, Stable but responsive cloth, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 604 611.
[40]
{40} E. Grinspun, P. Krysl, P. Schroder, CHARMS: a simple framework for adaptive simulation, ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002) 281-290.
[41]
{41} D. Baraff, A. Witkin, M. Kass, Untangling cloth, ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003) 862-870.
[42]
{42} T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[43]
{43} J. Bonet, R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, Cambridge, 1997.
[44]
{44} J. Teran, E. Sifakis, S. Salinas-Blemker, V. Ng-Thow-Hing, C. Lau, R. Fedkiw, Creating and simulating skeletal muscle from the visible human data set, IEEE Trans. Vis. Comput. Graph. 11 (3) (2005) 317-328.
[45]
{45} F. Armero, E. Love, An arbitrary Lagrangian Eulerian finite element method for finite strain plasticity, Int. J. Numer. Meth. Eng. 57 (2003) 471-508.
[46]
{46} N. Molino, J. Bao, R. Fedkiw, A virtual node algorithm for changing mesh topology during simulation, ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004) 385-392.
[47]
{47} N. Foster, D. Metaxas, Controlling fluid animation, in: Computer Graphics International 1997, 1997, pp. 178-188.
[48]
{48} J. Popović, S. Seitz, M. Erdmann, Z. Popović, A. Witkin, Interactive manipulation of rigid body simulations, ACM Trans. Graph. (SIGGRAPH Proc.) 19 (2000) 209-217.
[49]
{49} A. Treuille, A. McNamara, Z. Popovic, J. Stam, Keyframe control of smoke simulations, ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003) 716-723.
[50]
{50} B. Boroomand, B. Khalilian, On using linear elements in incompressible plane strain problems: a simple edge based approach for triangles, Int. J. Numer. Meth. Eng. 61 (2004) 1710 1740.
[51]
{51} E. de Souza Neto, F.A. Pires, D. Owen, F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking, Int. J. Numer. Meth. Eng. 62 (2005) 353-383.
[52]
{52} F.A. Pires, E. de Souza Neto, D. Owen, On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials, Comput. Meth. Appl. Mech. Eng. 193 (2004) 5223-5256.
[53]
{53} Y. Guo, M. Ortiz, T. Belytschko, E. Repetto, Triangular composite finite elements, Int. J. Numer. Meth. Eng. 47 (2000) 287-316.
[54]
{54} P. Thoutireddy, J. Molinari, E. Repetto, M. Ortiz, Tetrahedral composite finite elements, Int. J. Numer. Meth. Eng. 53 (2002) 1337-1351.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Graphical Models
Graphical Models  Volume 68, Issue 2
Special issue on SCA 2004
March 2006
170 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 March 2006

Author Tags

  1. finite elements
  2. hexahedral elements
  3. inversion
  4. large deformation
  5. plasticity
  6. shells
  7. stability
  8. tetrahedral elements
  9. volumetric solids

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Analytic rotation-invariant modelling of anisotropic finite elementsACM Transactions on Graphics10.1145/366608643:5(1-20)Online publication date: 9-Aug-2024
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2023)Deep Learning for Physics SimulationACM SIGGRAPH 2023 Courses10.1145/3587423.3595518(1-25)Online publication date: 24-Jul-2023
  • (2022)Energetically consistent inelasticity for optimization time integrationACM Transactions on Graphics10.1145/3528223.353007241:4(1-16)Online publication date: 22-Jul-2022
  • (2021)Improving Hexahedral-FEM-Based Plasticity in Surgery SimulationMedical Image Computing and Computer Assisted Intervention – MICCAI 202110.1007/978-3-030-87202-1_55(571-580)Online publication date: 27-Sep-2021
  • (2019)Material-adapted refinable basis functions for elasticity simulationACM Transactions on Graphics10.1145/3355089.335656738:6(1-15)Online publication date: 8-Nov-2019
  • (2018)Active Animations of Reduced Deformable Models with Environment InteractionsACM Transactions on Graphics10.1145/319756537:3(1-17)Online publication date: 7-Aug-2018
  • (2018)Numerical coarsening using discontinuous shape functionsACM Transactions on Graphics10.1145/3197517.320138637:4(1-12)Online publication date: 30-Jul-2018
  • (2017)Dynamically Enriched MPM for Invertible ElasticityComputer Graphics Forum10.1111/cgf.1298736:6(381-392)Online publication date: 1-Sep-2017
  • (2017)A time-integration method for stable simulation of extremely deformable hyperelastic objectsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-016-1225-033:10(1335-1346)Online publication date: 1-Oct-2017
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media