Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Stable and controllable noise

Published: 01 September 2008 Publication History

Abstract

We introduce a stable noise function with controllable properties. The well-known Perlin noise function is generated by interpolation of a pre-defined random number table. This table must be modified if user-defined constraints are to be satisfied, but modification can destroy the stability of the table. We integrate statistical tools for measuring the stability of a random number table with user constraints within an optimization procedure, so as to create a controlled random number table which nevertheless has a uniform random distribution, no periodicity, and a band-limited property.

References

[1]
K. Perlin, A unified texture/reflectance model, in: SIGGRAPH'84 Advanced Image Synthesis Course Notes, 1984.
[2]
K. Perlin, An image synthesizer, in: SIGGRAPH'85 Proceedings, 1985, pp. 287-296.
[3]
Ebert, D., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S., Mark, B. and Hart, J., Texture & Modeling: A Procedural Approach. 2002. third ed. Morgan Kaufmann.
[4]
K. Perlin, Improving noise, in: SIGGRAPH'02 Proceedings, 2002, pp. 681-682.
[5]
R.L. Cook, T. DeRose, Wavelet noise, in: Proceedings of ACM SIGGRAPH'05, 2005, pp. 803-811.
[6]
Law, A.M. and Kelton, W.D., Simulation Modeling & Analysis. 1991. third ed. McGraw-Hill.
[7]
M.F. Cohen, J. Shade, S. Hiller, O. Deussen, Wang tiles for image and texture generation, in: Proceedings of ACM SIGGRAPH'03, 2003, pp. 287-294.
[8]
Apodaca, A.A. and Gritz, L., Advanced Renderman: Creating CGI for Motion Pictures. 2000. Morgan Kaufman.
[9]
J.P. Lewis, Algorithms for solid noise synthesis, in: Proceedings of ACM SIGGRAPH'89, 1989, pp. 263-270.
[10]
A. Lamorlette, N. Foster, Structural modeling of frames for a production, in: SIGGRAPH'02 Proceedings, 2002, pp. 729-735.
[11]
F.K. Musgrave, Great balls of fire, in: SIGGRAPH'97 Animation Sketches, Visual Proceedings, 1997, pp. 259-268.
[12]
K. Perlin, F. Neyret, Flow noise, in: SIGGRAPH'01 Technical Sketches and Applications, 2001, p. 187.
[13]
J. Schpok, J. Simons, D. Ebert, C. Hansen, A real-time cloud modeling, rendering, and animation system, in: Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation, 2003, pp. 160-166.
[14]
Perlin, K., Realtime responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics. v1 i1. 5-15.
[15]
J.C. Hart, Perlin noise pixel shaders, in: Proceedings of Graphics Hardware 2001: Eurographics/SIGGRAPH Workshop, 2001, pp. 87-94.
[16]
Lewis, J.P., Generalized stochastic subdivision. ACM Transactions on Graphics. v6 i3. 167-190.
[17]
Yoon, J.C., Lee, I.K. and Choi, J.J., Editing noise. Computer Animation and Virtual Worlds. v15 i3. 277-287.
[18]
Lehmer, D.H., Mathematical methods in large-scale computing units. Annals of the Computing Laboratory of Harvard University. v26. 141-146.
[19]
Ahrens, J.H. and Dieter, U., Extensions of Forsythe's method for random sampling from the normal distribution. Mathematics of Computation. v27. 927-937.
[20]
Wichmann, B.A., Algorithm as 183: an efficient and portable pseudo-random number generator. Applied Statistics. v31. 188-190.
[21]
Matteis, A.D. and Pagnutti, S., Critical distances in pseudorandom sequences generated with composite moduli. International Journal of Computer Mathematics. v43. 189-196.
[22]
Matsumoto, M. and Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation. v8. 3-30.
[23]
Fishman, G.S., Principles of Discrete Event Simulation. 1978. John Wiley.
[24]
Knuth, D.E., The Art of Computer Programming. 1998. Addison-Wesley.
[25]
Reynolds, H.T., Analysis of Nominal Data. 1984. Sage Publications.
[26]
Proakis, J.G. and Manolakis, D.G., Digital Signal Processing: Principles, Algorithms, and Applications. 1996. third ed. Cambridge University Press.
[27]
Coleman, T.F. and Li, Y., On the convergence of interior-reflective newton methods for nonlinear minimization subject to bounds. Mathematical Programming. v67 i1-3. 189-224.
[28]
Lagae, A. and Dutré, P., An alternative for wang tiles: colored edges versus colored corners. ACM Transactions of Graphics. v25 i4. 1442-1459.
[29]
J. Kopf, D. Cohen-Or, O. Deussen, D. Lischinski, Recursive wang tiles for real-time blue noise, in: Proceedings of ACM SIGGRAPH'06, 2006, pp. 509-518.
[30]
L.-Y. Wei, Tile-based texture mapping on graphics hardware, in: Proceedings of Graphics Hardware'04, 2004, pp. 55-63.
[31]
Lagae, A. and Dutré, P., A procedural object distribution function. ACM Transactions of Graphics. v24 i4. 1442-1461.
[32]
Burt, P.J. and Adelson, E.H., The Laplacian pyramid as a compact image code. IEEE Transactions on Communications COM-31. v4. 532-540.
[33]
Portilla, J. and Simoncelli, E.P., A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision. v40 i1. 49-70.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Graphical Models
Graphical Models  Volume 70, Issue 5
September, 2008
30 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 September 2008

Author Tags

  1. Noise
  2. Noise control
  3. Procedural textures
  4. Random number generation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media