Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Deep learning with geodesic moments for 3D shape classification

Published: 01 April 2018 Publication History
  • Get Citation Alerts
  • Abstract

    We present an integrated framework for 3D shape classification using deep learning with geodesic moments.We construct high-level features using a two-layer stacked sparse autoencoder.We demonstrate the better classification accuracy of our approach on several 3D shape benchmarks.We conduct a comprehensive comparison with existing algorithms. In this paper, we present a deep learning framework for efficient 3D shape classification using geodesic moments. Our approach inherits many useful properties from the geodesic distance, most notably the capture of the intrinsic geometric structure of 3D shapes and the invariance to isometric deformations. Moreover, we show the similarity between the convergent series of the geodesic moments and the inverse-square eigenvalues of the LaplaceBeltrami operator in the continuous setting. The proposed algorithm uses a two-layer stacked sparse autoencoder to learn deep features from geodesic moments by training the hidden layers individually in an unsupervised fashion, followed by a softmax classifier. Experimental results on three standard 3D shape benchmarks demonstrate superior performance of the proposed approach compared to existing methods.

    References

    [1]
    W. Shen, Y. Wang, X. Bai, H. Wang, L. Latecki, Shape clustering: common structure discovery, Pattern Recognit., 46 (2013) 539-550.
    [2]
    S. Biasotti, A. Cerri, M. Abdelrahman, M. Aono, A. Ben Hamza, M. El-Melegy, A. Farag, V. Garro, A. Giachetti, D. Giorgi, A. Godil, C. Li, Y.-J. Liu, H. Martono, C. Sanada, A. Tatsuma, S. Velasco-Forero, C.-X. Xu, SHREC14 track: retrieval and classification on textured 3d models, 2014.
    [3]
    C. Li, A. Stevens, C. Chen, Y. Pu, Z. Gan, L. Carin, Learning weight uncertainty with stochastic gradient MCMC for shape classification, 2016.
    [4]
    D. Pickup, X. Sun, P. Rosin, R. Martin, Z. Cheng, Z. Lian, M. Aono, A. Ben Hamza, A. Bronstein, M. Bronstein, S. Bu, U. Castellani, S. Cheng, V. Garro, A. Giachetti, A. Godil, L. Isaia, J. Han, H. Johan, L. Lai, B. Li, C. Li, H. Li, R. Litman, X. Liu, Z. Liu, Y. Lu, L. Sun, G. Tam, A. Tatsuma, J. Ye, Shape retrieval of non-rigid 3d human models, Int J. Comput. Vision, 120 (2016) 169-193.
    [5]
    M. Savva, F. Yu, H. Su, M. Aono, B. Chen, D. Cohen-Or, W. Deng, H. Su, S. Bai, X. Bai, J.H. N. Fish, E. Kalogerakis, E. Learned-Miller, Y. Li, M. Liao, S. Maji, Y. Wang, N. Zhang, Z. Zhou, SHREC16 track: large-scale 3D shape retrieval from ShapeNet Core55, 2016.
    [6]
    R. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation, 2007.
    [7]
    J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, Comput. Graphics Forum, 28 (2009) 1383-1392.
    [8]
    M. Aubry, U. Schlickewei, D. Cremers, The wave kernel signature: a quantum mechanical approach to shape analysis, 2011.
    [9]
    M. Masoumi, A. Ben Hamza, A spectral graph wavelet approach for nonrigid 3D shape retrieval, Pattern Recognit. Lett., 83 (2016) 339-348.
    [10]
    M. Reuter, F. Wolter, N. Peinecke, Laplace-Beltrami spectra as Shape-DNA of surfaces and solids, Comput.-Aided Des., 38 (2006) 342-366.
    [11]
    A. Chaudhari, R. Leahy, B. Wise, N. Lane, R. Badawi, A. Joshi, Global point signature for shape analysis of carpal bones, Phys. Med. Biol., 59 (2014) 961-973.
    [12]
    Z. Gao, Z. Yu, X. Pang, A compact shape descriptor for triangular surface meshes, Comput.-Aided Des., 53 (2014) 62-69.
    [13]
    Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavou, H. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, D. Vandermeulen, A comparison of methods for non-rigid 3D shape retrieval, Pattern Recognit., 46 (2013) 449-461.
    [14]
    C. Li, A. Ben Hamza, Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey, Multimedia Syst., 20 (2014) 253-281.
    [15]
    J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw., 61 (2015) 85-117.
    [16]
    Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn., 2 (2009) 1-127.
    [17]
    S. Bu, Z. Liu, J. Han, J. Wu, R. Ji, Learning high-level feature by deep belief networks for 3-D model retrieval and recognition, IEEE Trans. Multimedia, 24 (2014) 2154-2167.
    [18]
    H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3D shape recognition, 2015.
    [19]
    C. Qi, H. Su, M. Niener, A. Dai, M. Yan, L. Guibas, Volumetric and multi-view CNNs for object classification on 3D data, 2016.
    [20]
    Z. Zhu, X. Wang, S. Bai, C. Yao, X. Bai, Deep learning representation using autoencoder for 3D shape retrieval, Neurocomputing (2016).
    [21]
    S. Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge University Press, 1997.
    [22]
    D. Aouada, H. Krim, Squigraphs for fine and compact modeling of 3D shapes, IEEE Trans. Image Process., 19 (2010) 306-321.
    [23]
    O. Calin, D.-C. Chang, Gemetric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations, Birkhuser, 2005.
    [24]
    Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavou, H. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, D. Vandermeulen, SHREC11 track: shape retrieval on non-rigid 3D watertight meshes, 2011.
    [25]
    Z. Lian, A. Godil, T. Fabry, T. Furuya, J. Hermans, R. Ohbuchi, C. Shu, D. Smeets, P. Suetens, D. Vandermeulen, S. Wuhrer, SHREC10 track: non-rigid 3D shape retrieval, 2010.
    [26]
    J.Z. Z. Lian, S. Choi, H. ElNaghy, J. El-Sana, T. Furuya, A. Giachetti, R.G.L. Isaia, L. Lai, C. Li, H. Li, F. Limberger, R. Martin, R. Nakanishi, A.N.L. Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A. Sharf, L. Sun, X. Sun, S. Tari, G. Unal, R. Wilson, SHREC15 track: non-rigid 3D shape retrieval, 2015.
    [27]
    M. Khabou, L. Hermi, M. Rhouma, Shape recognition using eigenvalues of the Dirichlet Laplacian, Pattern Recognit., 40 (2007) 141-153.
    [28]
    F. Hajati, A. Raie, Y. Gao, 2.5D face recognition using patch geodesic moments, Pattern Recognit., 45 (2012) 969-982.

    Cited By

    View all

    Index Terms

    1. Deep learning with geodesic moments for 3D shape classification
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Pattern Recognition Letters
        Pattern Recognition Letters  Volume 105, Issue C
        April 2018
        237 pages

        Publisher

        Elsevier Science Inc.

        United States

        Publication History

        Published: 01 April 2018

        Author Tags

        1. 41A05
        2. 41A10
        3. 65D05
        4. 65D17
        5. Deep learning
        6. Geodesic moments
        7. LaplaceBeltrami
        8. Shape classification
        9. Stacked autoencoders

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 27 Jul 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)A viewpoint-guided prototype network for 3D shape classificationMultimedia Systems10.1007/s00530-023-01177-929:6(3531-3547)Online publication date: 1-Dec-2023
        • (2022)GDR-Net: A Geometric Detail Recovering Network for 3D Scanned ObjectsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311065828:12(3959-3973)Online publication date: 1-Dec-2022
        • (2022)Topological and geometrical joint learning for 3D graph dataMultimedia Tools and Applications10.1007/s11042-022-13806-y82:10(15457-15474)Online publication date: 5-Oct-2022
        • (2020)Robust classification of 3D objects using discrete orthogonal moments and deep neural networksMultimedia Tools and Applications10.1007/s11042-020-08654-779:27-28(18883-18907)Online publication date: 1-Jul-2020
        • (2019)Constructing 3D facial hierarchical structure based on surface measurementsMultimedia Tools and Applications10.1007/s11042-018-6839-y78:11(14753-14776)Online publication date: 1-Jun-2019
        • (2019)Deep similarity network fusion for 3D shape classificationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-019-01668-935:6-8(1171-1180)Online publication date: 1-Jun-2019
        • (2018)Evaluation of Point Cloud Categorization for Rigid and Non-Rigid 3D ObjectsProceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing10.1145/3293353.3293413(1-9)Online publication date: 18-Dec-2018
        • (2018)Large-scale 3D Point Cloud Classification Based On Feature Description Matrix By CNNProceedings of the 31st International Conference on Computer Animation and Social Agents10.1145/3205326.3205355(43-47)Online publication date: 21-May-2018

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media