Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Theory of Shape by Space Carving

Published: 21 July 2000 Publication History

Abstract

In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped scene from multiple photographs taken at known but arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a special member of this class, the photo hull, that (1) can be computed directly from photographs of the scene, and (2) subsumes all other members of this class. We then give a provably-correct algorithm, called Space Carving, for computing this shape and present experimental results on complex real-world scenes. The approach is designed to (1) capture photorealistic shapes that accurately model scene appearance from a wide range of viewpoints, and (2) account for the complex interactions between occlusion, parallax, shading, and their view-dependent effects on scene-appearance.

References

[1]
Alfvin, R.L. and Fairchild, M.D. 1997. Observer variability in metameric color matches using color reproduction media. Color Research & Application, 22(3):174-178.
[2]
Aloimonos, Y. 1988. Visual shape computation. Proc. IEEE, 76:899-916.
[3]
Armstrong, M.A. 1983. Basic Topology. Springer-Verlag.
[4]
Bascle, B. and Deriche, R. 1993. Stereo matching, reconstruction and refinement of 3D curves using deformable contours. In Proc. 4th Int. Conf. Computer Vision, pp. 421-430.
[5]
Beardsley, P., Torr, P., and Zisserman, A. 1996. 3D model acquisition from extended image sequences. In Proc. 4th European Conf. on Computer Vision, pp. 683-695.
[6]
Belhumeur, P.N. 1996. A bayesian approach to binocular stereopsis. Int. J. on Computer Vision, 19(3):237-260.
[7]
Belhumeur, P.N. and Kriegman, D.J. 1996. What is the set of images of an object under all possible lighting conditions? In Proc. Computer Vision and Pattern Recognition, pp. 270-277.
[8]
Bolles, R.C., Baker, H.H., and Marimont, D.H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. Int. J. Computer Vision, 1:7-55.
[9]
Bolles, R.C. and Cain, R.A. 1982. Recognizing and locating partially-visible objects: The local-feature-focus method. Int. J. Robotics Research, 1(3):57-82.
[10]
Cipolla, R. and Blake, A. 1992. Surface shape from the deformation of apparent contours. Int. J. Computer Vision, 9(2):83-112.
[11]
Collins, R.T. 1996. A space-sweep approach to true multiimage matching. In Proc. Computer Vision and Pattern Recognition Conf., pp. 358-363.
[12]
Cox, I., Hingorani, S., Rao, S., and Maggs, B. 1996. A maximum likelihood stereo algorithm. CVIU: Image Understanding, 63(3):542-567.
[13]
Culbertson, W.B., Malzbender, T., and Slabaugh, G. 1999. Generalized voxel coloring. In Workshop on Vision Algorithms: Theory and Practice, Corfu, Greece.
[14]
Curless, B. and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proc. SIGGRAPH'96, pp. 303-312.
[15]
Debevec, P.E., Taylor, C.J., and Malik, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In Proc. SIGGRAPH'96, pp. 11-20.
[16]
Epstein, R., Yuille, A.L., and Belhumeur, P.N. 1996. Learning object representations from lighting variations. In Object Representation in Computer Vision II, J. Ponce, A. Zisserman, and M. Hebert (Eds.). Springer-Verlag, pp. 179-199.
[17]
Faugeras, O. 1995. Stratification of three-dimensional vision: Projective, affine, and metric representations. J. Opt. Soc. Am. A, 12(3):465-484.
[18]
Faugeras, O.D. 1998. Personal communication.
[19]
Faugeras, O. and Keriven, R. 1998. Complete dense stereovision using level set methods. In Proc. 5th European Conf. on Computer Vision, pp. 379-393.
[20]
Faugeras, O.D. and Maybank, S. 1990. Motion from point matches: Multiplicity of solutions. Int. J. Computer Vision, 4:225-246.
[21]
Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. 1990. Computer Graphics Principles and Practice. Addison-Wesley Publishing Co.
[22]
Forsyth, D. and Zisserman, A. 1991. Reflections on shading. IEEE Trans. Pattern Anal. Machine Intell., 13(7):671-679.
[23]
Freund, J.E. 1992. Mathematical Statistics. Prentice Hall: Englewood Cliffs, NJ.
[24]
Fua, P. and Leclerc, Y.G. 1995. Object-centered surface reconstruction: Combining multi-image stereo and shading. Int. J. Computer Vision, 16:35-56.
[25]
Fuchs, H., Kedem, Z., and Naylor, B.F. 1980. On visible surface generation by a priori tree structures. In Proc. SIGGRAPH '80, pp. 39-48.
[26]
Hoff, W. and Ahuja, N. 1989. Surfaces from stereo: Integrating feature matching, disparity estimation, and contour detection. IEEE Trans. Pattern Anal. Machine Intell., 11:121-136.
[27]
Kakadiaris, I.A. and Metaxas, D. 1995. 3D human body model acquisition from multiple views. In Proc. Int. Conf. on Computer Vision, pp. 618-623.
[28]
Kanade, T., Narayanan, P.J., and Rander, P.W. 1995. Virtualized reality: Concepts and early results. In Proc. Workshop on Representations of Visual Scenes, pp. 69-76.
[29]
Kanade, T., Yoshida, A., Oda, K., Kano, H., and Tanaka, M. 1996. A stereo machine for video-rate dense depth mapping and its new applications. In Proc. Computer Vision and Pattern Recognition Conf.
[30]
Kang, S.B. and Szeliski, R. 1996. 3-D scene data recovery using omnidirectional multibaseline stereo. In Proc. Computer Vision and Pattern Recognition Conf., pp. 364-370.
[31]
Katayama, A., Tanaka, K., Oshino, T., and Tamura, H. 1995. A viewpoint dependent stereoscopic display using interpolation of multi-viewpoint images. In Proc. SPIE, Vol. 2409A, pp. 21-30.
[32]
Koenderink, J.J. and van Doorn, A.J. 1991. Affine structure from motion. J. Opt. Soc. Am., A(2):377-385.
[33]
Kutulakos, K.N. 1997. Shape from the light field boundary. In Proc. Computer Vision and Pattern Recognition, pp. 53-59.
[34]
Kutulakos, K.N. 2000. Approximate N-view stereo. In Proc. European Conf. on Computer Vision.
[35]
Kutulakos, K.N. and Dyer, C.R. 1994. Recovering shape by purposive viewpoint adjustment. Int. J. Computer Vision, 12(2):113- 136.
[36]
Kutulakos, K.N. and Dyer, C.R. 1995. Global surface reconstruction by purposive control of observer motion. Artificial Intelligence Journal, 78(1-2):147-177.
[37]
Langer, M.S. and Zucker, S.W. 1994. Shape-from-shading on a cloudy day. J. Opt. Soc. Am. A, 11(2):467-478.
[38]
Laurentini, A. 1994. The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Machine Intell., 16(2):150-162.
[39]
Marr, D. 1982. Vision. Freeman.
[40]
Martin, W.N. and Aggarwal, J.K. 1983. Volumetric descriptions of objects from multiple views. IEEE Proc. Pattern Anal. Machine Intell., 5(2):150-158.
[41]
Moezzi, S., Katkere, A., Kuramura, D.Y., and Jain, R. 1996. Reality modeling and visualization from multiple video sequences. IEEE Computer Graphics and Applications, 16(6):58-63.
[42]
Mundy, J.L. and Zisserman, A. (Eds.). 1992. Geometric Invariance in Computer Vision. MIT Press.
[43]
Narayanan, P.J., Rander, P.W., and Kanade, T. 1998. Constructing virtual worlds using dense stereo. In Proc. Int. Conf. on Computer Vision, pp. 3-10.
[44]
Newell, M.E., Newell, R.G., and Sancha, T.L. 1972. A solution to the hidden surface problem. In Proc. ACM National Conference, pp. 443-450.
[45]
Okutomi, M. and Kanade, T. 1993. A multiple-baseline stereo. IEEE Trans. Pattern Anal. Machine Intell., 15(4):353-363.
[46]
Poggio, T., Torre, V., and Koch, C. 1985. Computational vision and regularization theory. Nature, 317(26):314-319.
[47]
Pollefeys, M., Koch, R., and Gool, L.V. 1998. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In Proc. 6th Int. Conf. on Computer Vision, pp. 90-95.
[48]
Pritchett, P. and Zisserman, A. 1998. Wide baseline stereo matching. In Proc. 6th Int. Conf. on Computer Vision, pp. 754-760.
[49]
Roy, S. and Cox, I.J. 1998. A maximum-flow formulation of the N-camera stereo correspondence problem. In Proc. 6th Int. Conf. on Computer Vision, pp. 492-499.
[50]
Sato, Y., Wheeler, M.D., and Ikeuchi, K. 1997. Object shape and reflectance modeling from observation. In Proc. SIGGRAPH'97, pp. 379-387.
[51]
Seales, W.B. and Faugeras, O. 1995. Building three-dimensional object models from image sequences. Computer Vision and Image Understanding, 61(3):308-324.
[52]
Seitz, S.M. and Dyer, C.R. 1995. Complete scene structure from four point correspondences. In Proc. 5th Int. Conf. on Computer Vision, pp. 330-337.
[53]
Seitz, S.M. and Dyer, C.R. 1999. Photorealistic scene reconstruction by voxel coloring. Int. J. Computer Vision, 35(2):151- 173.
[54]
Seitz, S.M. and Kutulakos, K.N. 1998. Plenoptic image editing. In Proc. 6th Int. Conf. Computer Vision, pp. 17-24.
[55]
Smith, A.R. and Blinn, J.F. 1996. Blue screen matting. In Proc. SIGGRAPH'96, pp. 259-268.
[56]
Stewart, C.V. 1995. MINPRAN: A new robust estimator for computer vision. IEEE Trans. Pattern Anal. Machine Intell., 17(10): 925-938.
[57]
Szeliski, R. 1993. Rapid octree construction from image sequences. CVGIP: Image Understanding, 58(1):23-32.
[58]
Szeliski, R. and Golland, P. 1998. Stereo matching with transparency and matting. In Proc. 6th Int. Conf. on Computer Vision, pp. 517- 524.
[59]
Szeliski, R. and Weiss, R. 1994. Robust shape recovery from occluding contours using a linear smoother. In Real-time Computer Vision, C.M. Brown and D. Terzopoulos (Eds.). Cambridge University Press, pp. 141-165.
[60]
Tomasi, C. and Kanade, T. 1992. Shape and motion from image streams under orthography: A factorization method. Int. J. Computer Vision, 9(2):137-154.
[61]
Torrance, K.E. and Sparrow, E.M. 1967. Theory of off-specular reflection from roughened surface. Journal of the Optical Society of America, 57:1105-1114.
[62]
Turk, G. and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc. SIGGRAPH'94, pp. 311-318.
[63]
Vaillant, R. and Faugeras, O.D. 1992. Using extremal boundaries for 3-D object modeling. IEEE Trans. Pattern Anal. Machine Intell., 14(2):157-173.
[64]
van Veen, J.A.J.C. and Werkhoven, P. 1996. Metamerisms in structure-from-motion perception. Vision Research, 36(14):2197- 2210.
[65]
Woodham, R.J., Iwahori, Y., and Barman, R.A. 1991. Photometric stereo: Lambertian reflectance and light sources with unknown direction and strength. Technical Report 91-18, University of British Columbia, Laboratory for Computational Intelligence.
[66]
Zhang, Z. 1998. Image-based geometrically-correct photorealistic scene/object modeling (IBPhM): A review. In Proc. 3rd Asian Conf. on Computer Vision, pp. 340-349.
[67]
Zhao, C. and Mohr, R. 1996. Global three-dimensional surface reconstruction from occluding contours. Computer Vision and Image Understanding, 64(1):62-96.
[68]
Zitnick, C.L. and Webb, J.A. 1996. Multi-baseline stereo using surface extraction. Technical Report CMU-CS-96-196, Carnegie Mellon University, Pittsburgh, PA.

Cited By

View all
  • (2024)NeUDF: Learning Neural Unsigned Distance Fields With Volume RenderingIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.333535346:4(2364-2377)Online publication date: 1-Apr-2024
  • (2024)Polarimetric Inverse Rendering for Transparent Shapes ReconstructionIEEE Transactions on Multimedia10.1109/TMM.2024.337179226(7801-7811)Online publication date: 29-Feb-2024
  • (2024)EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware LabelIEEE Transactions on Image Processing10.1109/TIP.2023.334792933(753-766)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Computer Vision
International Journal of Computer Vision  Volume 38, Issue 3
Special issue on Genomic Signal Processing
July-August 2000
67 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 21 July 2000

Author Tags

  1. 3D photography
  2. metameric shapes
  3. multi-view stereo
  4. photorealistic reconstruction
  5. scene modeling
  6. shape-from-silhouettes
  7. space carving
  8. visual hull
  9. volumetric shape representations
  10. voxel coloring

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)NeUDF: Learning Neural Unsigned Distance Fields With Volume RenderingIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.333535346:4(2364-2377)Online publication date: 1-Apr-2024
  • (2024)Polarimetric Inverse Rendering for Transparent Shapes ReconstructionIEEE Transactions on Multimedia10.1109/TMM.2024.337179226(7801-7811)Online publication date: 29-Feb-2024
  • (2024)EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware LabelIEEE Transactions on Image Processing10.1109/TIP.2023.334792933(753-766)Online publication date: 1-Jan-2024
  • (2024)RGB camera-based monocular stereo vision applied in plant phenotypeComputers and Electronics in Agriculture10.1016/j.compag.2024.109523227:P1Online publication date: 1-Dec-2024
  • (2024)Towards multi-view consistency in neural ray fields using parametric medial surfacesComputers and Graphics10.1016/j.cag.2024.103991123:COnline publication date: 21-Nov-2024
  • (2024)Visibility-Aware Pixelwise View Selection for Multi-View Stereo MatchingPattern Recognition10.1007/978-3-031-78456-9_9(130-144)Online publication date: 1-Dec-2024
  • (2024)Surface-Centric Modeling for High-Fidelity Generalizable Neural Surface ReconstructionComputer Vision – ECCV 202410.1007/978-3-031-73411-3_11(183-200)Online publication date: 29-Sep-2024
  • (2024)SparseCraft: Few-Shot Neural Reconstruction Through Stereopsis Guided Geometric LinearizationComputer Vision – ECCV 202410.1007/978-3-031-72904-1_3(37-56)Online publication date: 29-Sep-2024
  • (2023)GenSProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668611(56932-56945)Online publication date: 10-Dec-2023
  • (2023)Depth-Guided Optimization of Neural Radiance Fields for Indoor Multi-View StereoIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.326346445:9(10835-10849)Online publication date: 1-Sep-2023
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media