Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

The evidence for neural information processing with precise spike-times: A survey

Published: 13 May 2004 Publication History

Abstract

This paper surveys recent findings in neuroscience regarding the behavioral relevancy of the precise timing with which real spiking neurons emit spikes. The literature suggests that in almost any system where the processing-speed of a neural (sub)-system is required to be high, the timing of single spikes can be very precise and reliable. Additionally, new, more refined methods are finding precisely timed spikes where previously none where found. This line of evidence thus provides additional motivation for researching the computational properties of networks of artificial spiking neurons that compute with more precisely timed spikes.

References

[1]
AgmonSnir H, Carr C and Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393: 268-272.
[2]
Bair W and Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation 8(6): 1185-1202.
[3]
Beierholm U, Nielsen C, Ryge J, Alstrom P and Kiehn O (2001) Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. J. Neurophysiol. 86: 1858- 1868.
[4]
Bell C, Han V, Sugawara Y and Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387: 278-281.
[5]
Bi B-q and Poo M-m (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401: 792-716.
[6]
Bi G-q and Poo M-m (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24): 10464-10472.
[7]
Bi G-q and Poo M-m (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24: 139-166.
[8]
Bialek W, Rieke F, Steveninck R de Ruyter van and Warland D (1991) Reading a neural code. Science 252: 1854-1857.
[9]
Bohte SM, Kok JN and La Poutré H (2002a) Spike-prop: error-backpropagation in multi-layer networks of spiking neurons. Neurocomputing 48(1-4): 17-37.
[10]
Bohte SM, Kok JN and La Poutré H (2002b) Unsupervised classification in a layered RBF network of spiking neurons. IEEE Trans. Neural Networks: 426-435.
[11]
Brenner N, Strong SP, Koberle R, Bialek Wand de Ruyter van Steveninck RR (2000) Synergy in a neural code. Neural Computation 12(7): 1531-1552.
[12]
Buracas G, Zador A, DeWeese M and Albright T (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20: 959-969.
[13]
Carr C and Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10: 3227-3246.
[14]
Chechik G (2003) Spike-timing-dependent-plasticity and relevant mutual information maximization. Neural Computation 15: 1481-1510.
[15]
Dayan P, Hausser M and London M (2003) Plasticity kernels and temporal statistics. In: Nips 2002 (Vol. 15). The MIT Press (to appear).
[16]
de Ruyter van Steveninck R, Borst A and Bialek W (2001) Real-time encoding of motion: answerable questions and questionable answers from the fly's visual system. In: Zanker J and Zeil J (eds) Motion Vision - Computational, Neural, and Ecological Constraints. Springer Verlag, Berlin Heidelberg New York.
[17]
de Ryter van Steveninck R, Lewen G, Strong S, Koberle R and Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275: 1805-1808.
[18]
deCharms R and Merzenich M (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381: 610-613.
[19]
Delorme A, Gautrais J, VanRullen R and Thorpe S (1999) Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing: 989-996.
[20]
DeWeese M and Zador A (2002) Binary coding in auditory cortex. In: Advances in Neural Information Processing Systems (Vol. 15). The MIT Press.
[21]
Eisele Mand Miller K (2003) Hidden markov model of cortical synaptic plasticity: Derivation of the learning rule. In: Nips 2002 (Vol. 15). The MIT Press (to appear).
[22]
Fairhall A, Lewen G, Bialek W and de Ruyter van Steveninck R (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412: 787-792.
[23]
Feldman D, Nicoll R, Malenka R and Isaac J (1998) Long-term depression at thalamocortical synapses in developing somatosensory cortex. Neuron 21: 347-357.
[24]
Fellous J-M, Houweling A, Modi R, Rao R, Tiesinga P and Sejnowski T (2001) Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J. Neurophysiol. 85: 1782-1787.
[25]
Gerstner W (1998) Spiking neurons. In: Maass W and Bishop CM (eds) Pulsed Neural Networks, pp. 3-55. The MIT Press.
[26]
Gerstner W (2000) Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation 12(1): 43-89.
[27]
Gerstner W, Kempter R, Hemmen J van and Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76-78.
[28]
Gray C (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31-47.
[29]
Gray C, König P, Engel A and Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
[30]
Harris K, Henze D, Hirase H, Leinekugel X, Dragoi G, Czurkó A and Buzsáki (2002) Spike train dynamics predicts theta-related phase precession in hippocampel pyramidal cells. Nature 417: 738-741.
[31]
Heiligenberg W (1991) Neural Nets in Electric Fish. MIT Press.
[32]
Hopfield J (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33-36.
[33]
Hopfield J and Brody C (2000) What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA 97: 13919-13924.
[34]
Izhikevich E, Deai N, Walcott E and Hoppensteadt F (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26(3): 161-167.
[35]
Johansson R and Birznieks I (2004) Fist spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neurosci. 7(2): 170-177.
[36]
Kandel E, Schwartz J and Jessell T (eds) (1991) Principles of Neural Science (third ed.). Elsevier/North-Holland, Amsterdam, London, New York.
[37]
Kepecs A, van Rossum M, Song S and Tegner J (2002) Spike-timing plasticity: common themes and divergent vistas. Biol. Cybern. 87: 446-458.
[38]
Kuwabara N and Suga N (1993) Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the branchium of the inferior colliculus of the mustached bat. J. Neurophysiol. 69: 1713-1724.
[39]
Laurent G (1999) A systems perspective on early olfactory coding. Science 286: 723-728.
[40]
Laurent G, Wehr M and Davidowitz H (1996) Temporal representations of odors in an olfactory network. J. Neurosci. 16(12): 3837-3847.
[41]
Lewen G, Bialek W. and de Ruyter van Steveninck R (2001) Neural coding of naturalistic motion stimuli. Network: Comput. Neural Syst. 12: 317-329.
[42]
Liu R, Tzonev S, Rebrik S and Miller K (1997) The structure and precision of retinal spike trains. Proc. Nat. Acad. Sc. USA 94: 5411-5416.
[43]
Liu R, Tzonev S, Rebrik S and Miller K (2001) Variability and information in a neural code of the cat lateral geniculate nucleus. J. Neurophys. 86: 2789-2806.
[44]
Maass W (1997a) Fast sigmoidal networks via spiking neurons. Neural Computation 9(2): 275-304.
[45]
Maass W (1997b) Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9): 1659-1671.
[46]
Mainen Z and Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268(5216): 1503-1506.
[47]
Markram H, Lübke J, Frotscher M and Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Nature 375: 213-215.
[48]
Mehta M, Lee A and Wilson M (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417: 741-746.
[49]
O'Keefe J and Recce M (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3: 317-330.
[50]
Oram M, Xiao D, Dritschel B and Payne K (2002) The temporal resolution of neural codes: does response latency have a unique role? Phil. Trans. R. Soc. Lond. B 357: 987-1001.
[51]
Reich D, Mechler F and Victor J (2001) Independent and redundant information in nearby cortical neurons. Science 294: 2566-2568.
[52]
Reinagel P and Reid R (2000) Temporal coding of visual information in the thalamus. J. Neurosci. 20(14): 5392-5400.
[53]
Shadlen M. and Movshon J (1999) Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron 24: 67-77.
[54]
Shadlen M and Newsome W (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4: 569-579.
[55]
Shadlen M and Newsome W (1995) Is there a signal in the noise? Curr. Opin. Neurobiol. 5: 248-250.
[56]
Shadlen M and Newsome W (1998) The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J. Neuronsci 18: 3870-3896.
[57]
Singer W (1999) Neuronal synchrony: A versatile code for the definition of relations. Neuron 24: 49-65.
[58]
Softky W (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5: 239-247.
[59]
Softky W and Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsp's. J. Neurosci. 13: 334-350.
[60]
Stopfer M and Laurent G (1999) Short-term memory in olfactory network dynamics. Nature 402: 610-614.
[61]
Stratford K, Tarczy-Hornoch K, Martin K, Bannister N and Jack J (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382: 258-261.
[62]
Thorpe S, Fize F and Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520-522.
[63]
von der Malsburg C (1981) The correlation theory of brain function. Internal Report 81-2, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
[64]
Williams S and Stuart G (2002) Dependence of epsp efficacy on synapse location in neocortical pyramidal neurons. Science 295: 1907-1910.
[65]
Zhang L, Tao H, Holt C, Harris W, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395(3): 37-44.

Cited By

View all
  • (2024)A Neuromorphic Spiking Neural Network Using Time-to-First-Spike Coding Scheme and Analog Computing in Low-Leakage 8T SRAMIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2024.336884932:5(848-859)Online publication date: 29-Feb-2024
  • (2024)Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neuronsApplied Soft Computing10.1016/j.asoc.2024.112120165:COnline publication date: 1-Nov-2024
  • (2021)Personalised predictive modelling with brain-inspired spiking neural networks of longitudinal MRI neuroimaging data and the case study of dementiaNeural Networks10.1016/j.neunet.2021.09.013144:C(522-539)Online publication date: 1-Dec-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Natural Computing: an international journal
Natural Computing: an international journal  Volume 3, Issue 2
2004
102 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 13 May 2004

Author Tags

  1. neural coding
  2. precise spike timing
  3. spiking neural networks
  4. synchrony coding
  5. temporal coding

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Neuromorphic Spiking Neural Network Using Time-to-First-Spike Coding Scheme and Analog Computing in Low-Leakage 8T SRAMIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2024.336884932:5(848-859)Online publication date: 29-Feb-2024
  • (2024)Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neuronsApplied Soft Computing10.1016/j.asoc.2024.112120165:COnline publication date: 1-Nov-2024
  • (2021)Personalised predictive modelling with brain-inspired spiking neural networks of longitudinal MRI neuroimaging data and the case study of dementiaNeural Networks10.1016/j.neunet.2021.09.013144:C(522-539)Online publication date: 1-Dec-2021
  • (2020)Synchronization of Hindmarsh Rose NeuronsNeural Networks10.1016/j.neunet.2019.11.024123:C(372-380)Online publication date: 1-Mar-2020
  • (2020)On the accuracy and computational cost of spiking neuron implementationNeural Networks10.1016/j.neunet.2019.09.026122:C(196-217)Online publication date: 1-Feb-2020
  • (2020)Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer InterfacesNeural Networks10.1016/j.neunet.2019.08.029121:C(169-185)Online publication date: 1-Jan-2020
  • (2020)Training multi-layer spiking neural networks using NormAD based spatio-temporal error backpropagationNeurocomputing10.1016/j.neucom.2019.10.104380:C(67-77)Online publication date: 7-Mar-2020
  • (2020)Spiking Neural Networks: Background, Recent Development and the NeuCube ArchitectureNeural Processing Letters10.1007/s11063-020-10322-852:2(1675-1701)Online publication date: 1-Oct-2020
  • (2019)Spiking neural networks for deep learning and knowledge representationNeural Networks10.1016/j.neunet.2019.08.019119:C(341-342)Online publication date: 1-Nov-2019
  • (2019)Personalised modelling with spiking neural networks integrating temporal and static informationNeural Networks10.1016/j.neunet.2019.07.021119:C(162-177)Online publication date: 1-Nov-2019
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media