Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Quantivine: A Visualization Approach for Large-Scale Quantum Circuit Representation and Analysis

Published: 25 October 2023 Publication History

Abstract

Quantum computing is a rapidly evolving field that enables exponential speed-up over classical algorithms. At the heart of this revolutionary technology are quantum circuits, which serve as vital tools for implementing, analyzing, and optimizing quantum algorithms. Recent advancements in quantum computing and the increasing capability of quantum devices have led to the development of more complex quantum circuits. However, traditional quantum circuit diagrams suffer from scalability and readability issues, which limit the efficiency of analysis and optimization processes. In this research, we propose a novel visualization approach for large-scale quantum circuits by adopting semantic analysis to facilitate the comprehension of quantum circuits. We first exploit meta-data and semantic information extracted from the underlying code of quantum circuits to create component segmentations and pattern abstractions, allowing for easier wrangling of massive circuit diagrams. We then develop <italic>Quantivine</italic>, an interactive system for exploring and understanding quantum circuits. A series of novel circuit visualizations is designed to uncover contextual details such as qubit provenance, parallelism, and entanglement. The effectiveness of <italic>Quantivine</italic> is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits and a formal user evaluation with quantum experts. A free copy of this paper and all supplemental materials are available at <uri>https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9</uri>.

References

[1]
R. Albertoni, A. Bertone, and M. D. Martino. Visualization and semantic analysis of geographic metadata. In Proc. GIR, pp. 9–16. ACM, New York, Nov. 2005. 3.
[2]
B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev., 120 (22): pp. 12685–12717, Nov. 2020. 1.
[3]
D. Bhattacharjee and A. Chattopadhyay. Depth-optimal quantum circuit placement for arbitrary topologies. CoRR, abs/1703.08540, Mar. 2017. 2, 6.
[4]
J. Biamonte, M. Faccin, and M. De Domenico. Complex networks from classical to quantum. Commun. Phys., 2 (1): p. 53, May 2019. 2.
[5]
J. D. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nat., 549 (7671): pp. 195–202, Sept. 2017. 1.
[6]
T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Comput. Geom., 9 (3): pp. 159–180, Feb. 1998. 3.
[7]
K. Börner. Extracting and visualizing semantic structures in retrieval results for browsing. In Proc. DL, pp. 234–235. ACM, New York, 2000. 3.
[8]
U. Brandes and T. Willhalm. Visualization of bibliographic networks with a reshaped landscape metaphor. In Proc. VisSym, pp. 159–164. Eurographics Association, Eindhoven, The Netherlands, May 2002. 3.
[9]
W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang. Structure-based suggestive exploration: a new approach for effective exploration of large networks. IEEE Trans. Vis. Comput. Graph., 25 (1): pp. 555–565, Aug. 2018. 3.
[10]
P. Das, S. S. Tannu, S. Dangwal, and M. K. Qureshi. ADAPT: mitigating idling errors in qubits via adaptive dynamical decoupling. In Proc. MICRO, pp. 950–962. ACM, New York, 2021. 4.
[11]
C. Developers. Cirq. Zenodo, December 2022. 1, 2.
[12]
C. Dunne and B. Shneiderman. Motif simplification: Improving network visualization readability with fan, connector, and clique glyphs. In Proc. CHI, pp. 3247–3256. ACM, New York, 2013. 3.
[13]
D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain. Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quantum Eng., 1: pp. 1–24, Oct. 2020. 1.
[14]
P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal, M. J. McConnell, G. Sapiro, A. Aspuru-Guzik, J. T. Baker, M. Bastiani et al., Quantum computing at the frontiers of biological sciences. Nat. Methods, 18 (7): pp. 701–709, Jan. 2021. 1.
[15]
Y. Feng, X. Wang, B. Pan, K. K. Wong, Y. Ren, S. Liu, Z. Yan, Y. Ma, H. Qu, and W. Chen. XNLI: Explaining and diagnosing NLI-based visual data analysis. IEEE Trans. Vis. Comput. Graph., pp. 1–14, Jan. 2023. 3.
[16]
R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger. Real-time imaging of quantum entanglement. Sci. Rep., 3 (1): pp. 1–5, May 2013. 2.
[17]
C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, and C. R. Monroe. Parallel entangling operations on a universal ion trap quantum computer. Nat., 572 (7769): pp. 368–372, July 2019. 4.
[18]
M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent directions algorithm for sparse matrices. In Proc. SIGKDD, pp. 845–854. ACM, New York, 2016. 3.
[19]
M. Ghoniem, J.-D. Fekete, and P. Castagliola. A comparison of the readability of graphs using node-link and matrix-based representations. In Proc. INFOVIS, pp. 17–24. IEEE, Piscataway, 2004. 3.
[20]
C. Görg, P. Birke, M. Pohl, and S. Diehl. Dynamic graph drawing of sequences of orthogonal and hierarchical graphs. In Proc. GD, pp. 228–238. Springer, Berlin, 2005. 3.
[21]
A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: a scalable quantum programming language. In Proc. PLDI, pp. 333–342. ACM, New York, 2013. 2.
[22]
D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin. UniXcoder: Unified cross-modal pre-training for code representation. In Proc. ACL, pp. 7212–7225. Association for Computational Linguistics, Dublin, Ireland, 2022. 3.
[23]
D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou. GraphCodeBERT: Pre-training code representations with data flow. In Proc. ICLR. [Online]. Available: OpenReview.net, Toronto, 2021. 3.
[24]
S. Hachul and M. Jünger. Drawing large graphs with a potential-field-based multilevel algorithm. In Proc. DG, pp. 285–295. Springer, Berlin, 2005. 3.
[25]
S. Hachul and M. Jünger. Large-graph layout algorithms at work: An experimental study. J. Graph Algorithms Appl., 11 (21): pp. 345–369, Jan. 2007. 3.
[26]
H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu. Evaluating the readability of force directed graph layouts: A deep learning approach. IEEE Comput. Graph. Appl., 39 (4): pp. 40–53, June 2019. 3.
[27]
D. Han, J. Pan, R. Pan, D. Zhou, N. Cao, J. He, M. Xu, and W. Chen. iNet: visual analysis of irregular transition in multivariate dynamic networks. Front. Comput. Sci., 16 (2): pp. 1–16, Sept. 2022. 3.
[28]
D. Han, J. Pan, C. Xie, X. Zhao, X. Luo, and W. Chen. A visual analytics approach for structural differences among graphs via deep learning. IEEE Comput. Graph. Appl., 41 (5): pp. 18–31, July 2021. 3.
[29]
D. Han, J. Pan, X. Zhao, and W. Chen. Netv. js: A web-based library for high-efficiency visualization of large-scale graphs and networks. Vis. Informatics, 5 (1): pp. 61–66, Mar. 2021. 3.
[30]
D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph., 12 (5): pp. 741–748, Nov. 2006. 4.
[31]
Y. Huang and M. Martonosi. Statistical assertions for validating patterns and finding bugs in quantum programs. In Proc. ISCA, pp. 541–553. ACM, New York, 2019. 4.
[32]
T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels. Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Intell., 3 (1): pp. 1–19, Mar. 2021. 4.
[33]
R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner. Exact and practical pattern matching for quantum circuit optimization. ACM Trans. Quantum Comput., 3 (1): pp. 1–41, Jan. 2022. 2.
[34]
M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one, 9 (6): p. e98679, June 2014. 3.
[35]
A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi. ScaffCC: a framework for compilation and analysis of quantum computing programs. In Proc. CF, pp. 1–10. ACM, New York, 2014. 2,4.
[36]
R. Jozsa and N. Linden. On the role of entanglement in quantum-computational speed-up. in Proc. R. Soc. Lond. A., 459 (2036): pp. 2011–2032, Aug. 2003. 2.
[37]
S. Kim, I. Woo, R. Maciejewski, D. S. Ebert, T. D. Ropp, and K. M. Thomas. Evaluating the effectiveness of visualization techniques for schematic diagrams in maintenance tasks. In Proc. APGV, pp. 33–40. ACM, New York, 2010. 2.
[38]
D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: Summarizing and understanding large graphs. In Proc. SDM, pp. 91–99. SIAM, SIAM, Philadelphia, USA, 2014. 3.
[39]
O.-H. Kwon and K.-L. Ma. A deep generative model for graph layout. IEEE Trans. Vis. Comput. Graph., 26 (1): pp. 665–675, Aug. 2019. 3.
[40]
C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan. Automatic annotation synchronizing with textual description for visualization. In Proc. CHI, pp. 1–13. ACM, New York, 2020. 3.
[41]
T. K. Landauer, D. Laham, and M. Derr. From paragraph to graph: Latent semantic analysis for information visualization. PNAS, 101(suppl_1): pp. 5214–5219, Apr. 2004. 3.
[42]
B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy for graph visualization. In Proc. BELIV, pp. 1–5. New York, 2006. 3.
[43]
K. LeFevre and E. Terzi. GraSS: Graph structure summarization. In Proc. SDM, pp. 454–465. SIAM, SIAM, Philadelphia, USA, 2010. 3.
[44]
C. Li, G. Baciu, and Y. Wang. Module-based visualization of large-scale graph network data. J. Vis., 20 (2): pp. 205–215, May 2017. 3.
[45]
S. Lin, J. Hao, and L. Sun. Quflow: Visualizing parameter flow in quantum circuits for understanding quantum computation. In Proc. SciVis, pp. 37–41. IEEE, Piscataway, 2018. 2.
[46]
Y. Liu, S. Arunachalam, and K. Temme. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 17 (9): pp. 1013–1017, July 2021. 1.
[47]
Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods and applications: A survey. ACM Comput. Surv., 51 (3), June 2018. 2,3,4.
[48]
A. Maccioni and D. J. Abadi. Scalable pattern matching over compressed graphs via dedensification. In Proc. SIGKDD, pp. 1755–1764. ACM, New York, 2016. 3.
[49]
A. Martin, B. Candelas, A. Rodríguez-Rozas, J. D. Martín-Guerrero, X. Chen, L. Lamata, R. Orús, E. Solano, and M. Sanz. Toward pricing financial derivatives with an IBM quantum computer. Phys. Rev. Res., 3: p. 013167. Feb. 2021. 2.
[50]
D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 27 (3): pp. 436–444, Feb. 2008. 2.
[51]
M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen. Sparsification of influence networks. In Proc. SIGKDD, pp. 529–537. ACM, New York, 2011. 3.
[52]
Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. CSI: Community-level social influence analysis. In Proc. ECML PKDD, pp. 48–63. Springer, Springer, Berlin, 2013. 3.
[53]
M. Miller and D. Miller. GraphStateVis: Interactive visual analysis of qubit graph states and their stabilizer groups. In Proc. QCE, pp. 378–384. IEEE, Piscataway, 2021. 2.
[54]
C. Mueller, B. Martin, and A. Lumsdaine. A comparison of vertex ordering algorithms for large graph visualization. In Proc. APVIS, pp. 141–148. IEEE, Piscataway, 2007. 3.
[55]
S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error. In Proc. SIGMOD, pp. 419–432. ACM, New York, 2008. 3.
[56]
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press, 10th ed., 2010. 1,2,3.
[57]
S. C. North and G. Woodhull. Online hierarchical graph drawing. In Proc. GD, pp. 232–246. Springer, Berlin, 2002. 3.
[58]
J. Pan, D. Han, F. Guo, D. Zhou, N. Cao, J. He, M. Xu, and W. Chen. RCAnalyzer: visual analytics of rare categories in dynamic networks. Front. Inf. Technol. Electron. Eng., 21 (4): pp. 491–506, Apr. 2020. 3.
[59]
J. Preskill. Quantum computing and the entanglement frontier. CoRR, Mar. 2012. 2.
[60]
J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2: p. 79, Aug. 2018. 2.
[61]
H. C. Purchase, E. Hoggan, and C. Görg. How important is the “Mental Map”?-an empirical investigation of a dynamic graph layout algorithm. In Proc. GD, pp. 184–195. Springer, Berlin, 2007. 3.
[62]
S. Ruan, Y. Wang, W. Jiang, Y. Mao, and Q. Guan. VACSEN: A visualization approach for noise awareness in quantum computing. IEEE Trans. Vis. Comput. Graph., 29 (1): pp. 462–472, Jan. 2023. 2.
[63]
S. Sen, A. B. Swoap, Q. Li, B. Boatman, I. N. Dippenaar, R. Gold, M. Ngo, S. Pujol, B. Jackson, and B. J. Hecht. Cartograph: Unlocking spatial visualization through semantic enhancement. In Proc. IUI, pp. 179–190. ACM, New York, 2017. 3.
[64]
Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Trans. Vis. Comput. Graph., 12 (6): pp. 1427–1439, Sept. 2006. 3.
[65]
S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, B. Fang, and S. Xu. QuGAN: A quantum state fidelity based generative adversarial network. In Proc. QCE, pp. 71–81. IEEE, Piscataway, 2021. 7.
[66]
K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. E. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler. Q#: Enabling scalable quantum computing and development with a high-level DSL. In Proc. RWDSL@CGO, pp. 1–10. ACM, New York, 2018., 2.
[67]
A. tA v, M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aharoni, V. Ajith, I. Y. Akhalwaya, G. Aleksandrowicz et al., Qiskit: An open-source framework for quantum computing, 2021. 1, 2.
[68]
B. Tan and J. Cong. Optimal layout synthesis for quantum computing. In Proc. ICCAD. ACM, New York, 2020. 2.
[69]
R. Tao, Y. Shi, J. Yao, X. Li, A. Javadi-Abhari, A. W. Cross, F. T. Chong, and R. Gu. Giallar: push-button verification for the qiskit quantum compiler. In Proc. PLDI, pp. 641–656. ACM, New York, 2022. 2.
[70]
Z. Tao, Y. Pan, A. Chen, and L. Wang. ShorVis: A comprehensive case study of quantum computing visualization. In Proc. ICVRV, pp. 360–365. IEEE, Piscataway, 2017. 2.
[71]
I. Viola and T. Isenberg. Pondering the concept of abstraction in (illustrative) visualization. IEEE Trans. Vis. Comput. Graph., 24 (9): pp. 2573–2588, Sept. 2018. 2,3.
[72]
X. Wang, Z. Wu, W. Huang, Y. Wei, Z. Huang, M. Xu, and W. Chen. VIS+AI: integrating visualization with artificial intelligence for efficient data analysis. Frontiers Comput. Sci., 17 (6): p. 176709, June 2023. 9.
[73]
Y. Wang, Z. Bai, Z. Lin, X. Dong, Y. Feng, J. Pan, and W. Chen. G6: A web-based library for graph visualization. Vis. Informatics, 5 (4): pp. 49–55, Dec. 2021. 3.
[74]
B. Weder, U. Breitenbücher, F. Leymann, and K. Wild. Integrating quantum computing into workflow modeling and execution. In Proc. UCC, pp. 279–291. IEEE, Piscataway, 2020. 1.
[75]
M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu. Wide quantum circuit optimization with topology aware synthesis. In Proc. QCS, pp. 1–11. IEEE, Piscataway, 2022. 2.
[76]
W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navigation cues with embedded visualizations. IEEE Trans. Vis. Comput. Graph., 13 (6): pp. 1129–1136, Nov. 2007. 3.
[77]
Y. Wu, T. Provan, F. Wei, S. Liu, and K. Ma. Semantic-preserving word clouds by seam carving. Comput. Graph. Forum, 30 (3): pp. 741–750, June 2011. 3.
[78]
X. Xie, X. Cai, J. Zhou, N. Cao, and Y. Wu. A semantic-based method for visualizing large image collections. IEEE Trans. Vis. Comput. Graph., 25 (7): pp. 2362–2377, July 2019. 3.
[79]
K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and Y. Wu. Visualizing the scripts of data wrangling with SOMNUS. IEEE Trans. Vis. Comput. Graph., pp. 1–1, Jan. 2022. 3.
[80]
M. Xu, Z. Li, O. Padon, S. Lin, J. Pointing, A. Hirth, H. Ma, J. Palsberg, A. Aiken, U. A. Acar, and Z. Jia. Quartz: superoptimization of quantum circuits. In Proc. PLDI, pp. 625–640. ACM, New York, 2022. 2.
[81]
Y. Zhao, L. Ge, H. Xie, G. Bai, Z. Zhang, Q. Wei, Y. Lin, Y. Liu, and F. Zhou. ASTF: visual abstractions of time-varying patterns in radio signals. IEEE Trans. Vis. Comput. Graph., 29 (1): pp. 214–224, Jan. 2023. 3.
[82]
Z. Zhou, L. Meng, C. Tang, Y. Zhao, Z. Guo, M. Hu, and W. Chen. Visual abstraction of large scale geospatial origin-destination movement data. IEEE Trans. Vis. Comput. Graph., 25 (1): pp. 43–53, Jan. 2019. 3.
[83]
M. Zhu, W. Chen, Y. Hu, Y. Hou, L. Liu, and K. Zhang. DRGraph: An efficient graph layout algorithm for large-scale graphs by dimensionality reduction. IEEE Trans. Vis. Comput. Graph., 27 (2): pp. 1666–1676, Dec. 2020. 3.

Cited By

View all
  • (2024)PREVis: Perceived Readability Evaluation for VisualizationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345631831:1(1083-1093)Online publication date: 16-Sep-2024
  • (2023)QuantumEyes: Towards Better Interpretability of Quantum CircuitsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333299930:9(6321-6333)Online publication date: 15-Nov-2023

Index Terms

  1. Quantivine: A Visualization Approach for Large-Scale Quantum Circuit Representation and Analysis
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 30, Issue 1
      Jan. 2024
      1456 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 25 October 2023

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 31 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)PREVis: Perceived Readability Evaluation for VisualizationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345631831:1(1083-1093)Online publication date: 16-Sep-2024
      • (2023)QuantumEyes: Towards Better Interpretability of Quantum CircuitsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333299930:9(6321-6333)Online publication date: 15-Nov-2023

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media