Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3400302.3415620acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
research-article
Open access

Optimal layout synthesis for quantum computing

Published: 17 December 2020 Publication History

Abstract

Recent years have witnessed the fast development of quantum computing. Researchers around the world are eager to run larger and larger quantum algorithms that promise speedups impossible to any classical algorithm. However, the available quantum computers are still volatile and error-prone. Thus, layout synthesis, which transforms quantum programs to meet these hardware limitations, is a crucial step in the realization of quantum computing. In this paper, we present two synthesizers, one optimal and one approximate but nearly optimal. Although a few optimal approaches to this problem have been published, our optimal synthesizer explores a larger solution space, thus is optimal in a stronger sense. In addition, it reduces time and space complexity exponentially compared to some leading optimal approaches. The key to this success is a more efficient spacetime-based variable encoding of the layout synthesis problem as a mathematical programming problem. By slightly changing our formulation, we arrive at an approximate synthesizer that is even more efficient and outperforms some leading heuristic approaches, in terms of additional gate cost, by up to 100%, and also fidelity by up to 10x on a comprehensive set of benchmark programs and architectures. For a specific family of quantum programs named QAOA, which is deemed to be a promising application for near-term quantum computers, we further adjust the approximate synthesizer by taking commutation into consideration, achieving up to 75% reduction in depth and up to 65% reduction in additional cost compared to the tool used in a leading QAOA study.

References

[1]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. An Efficient Circuit Compilation Flow for Quantum Approximate Optimization Algorithm. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, San Francisco, CA, USA, 6.
[2]
M. Amy, D. Maslov, M. Mosca, and M. Roetteler. 2013. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 6 (June 2013), 818--830. arXiv:1206.0758 [quant-ph]
[3]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum Supremacy Using a Programmable Superconducting Processor. Nature 574, 7779 (Oct. 2019), 505--510. arXiv:1910.11333 [quant-ph]
[4]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Florian Neukart, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Kevin J. Sung, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, and Leo Zhou. 2020. Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor. (April 2020). arXiv:2004.04197 [quant-ph]
[5]
Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-Gordon. 2005. Simulated Quantum Computation of Molecular Energies. Science 309, 5741 (2005), 1704--1707. arXiv:quantph/0604193
[6]
Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chattopadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ Computers: Invited Paper. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, Westminster, CO, USA, 1--7.
[7]
Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum Machine Learning. Nature 549, 7671 (Sept. 2017), 195--202.
[8]
Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. 2019. Circuit Transformations for Quantum Architectures. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 135), Wim van Dam and Laura Mancinska (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 3:1--3:24. arXiv:1902.09102 [quant-ph]
[9]
Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems (Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, Berlin, Heidelberg, 337--340.
[10]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm. (Nov. 2014). arXiv:1411.4028 [quant-ph]
[11]
Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T. Chong. 2020. Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse. (April 2020). arXiv:2004.11205 [quant-ph]
[12]
Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 12, 2 (Feb. 2019), 34. arXiv:1709.03489 [quant-ph]
[13]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS '19. ACM Press, Providence, RI, USA, 1001--1014. arXiv:1809.02573 [cs.ET]
[14]
Dmitri Maslov, Sean M. Falconer, and Michele Mosca. 2008. Quantum Circuit Placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 4 (April 2008), 752--763. arXiv:2002.09783
[15]
Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights. In Proceedings of the 46th International Symposium on Computer Architecture - ISCA '19. ACM Press, Phoenix, Arizona, 527--540. arXiv:1905.11349 [quant-ph]
[16]
Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. 2018. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj Quantum Information 4, 1 (Dec. 2018), 23. arXiv:1710.07345 [quant-ph]
[17]
Michael A Nielsen and Isaac L Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge, United Kingdom.
[18]
Eleanor G. Rieffel, Stuart Hadfield, Tad Hogg, Salvatore Mandrà, Jeffrey Marshall, Gianni Mossi, Bryan O'Gorman, Eugeniu Plamadeala, Norm M. Tubman, Davide Venturelli, Walter Vinci, Zhihui Wang, Max Wilson, Filip Wudarski, and Rupak Biswas. 2019. From Ansätze to Z-Gates: A NASA View of Quantum Computing. (May 2019). arXiv:1905.02860 [quant-ph]
[19]
Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit Placement to Minimize Communication Overhead in 2D Quantum Architectures. In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, Singapore, 495--500.
[20]
P.W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press, Santa Fe, NM, USA, 124--134. arXiv:quant-ph/9508027
[21]
Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceedings of the 2018 International Symposium on Code Generation and Optimization - CGO 2018. ACM Press, Vienna, Austria, 113--125.
[22]
Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. t|ket⟩: A Retargetable Compiler for NISQ Devices. Quantum Science and Technology (April 2020). arXiv:2003.10611 [quant-ph]
[23]
Bochen Tan and Jason Cong. 2020. Optimality Study of Existing Quantum Computing Layout Synthesis Tools. IEEE Trans. Comput. (July 2020). arXiv:2002.09783 [quant-ph]
[24]
Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems-ASPLOS '19 (ASPLOS '19). Association for Computing Machinery, Providence, RI, USA, 987--999. arXiv:1805.10224 [cs.ET]
[25]
Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations. In Proceedings of the 56th Annual Design Automation Conference 2019 on - DAC '19. ACM Press, Las Vegas, NV, USA, 1--6. arXiv:1907.02026 [quant-ph]
[26]
Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. 2008. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In 38th International Symposium on Multiple Valued Logic ISMVL 2008. IEEE, Dallas, TX, USA, 220--225.
[27]
Robert Wille, Aaron Lye, and Rolf Drechsler. 2014. Optimal SWAP Gate Insertion for Nearest Neighbor Quantum Circuits. In 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, Singapore, 489--494.
[28]
Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient Mapping of Quantum Circuits to the IBM QX Architectures. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Dresden, Germany, 1135--1138. arXiv:1712.04722 [quant-ph]

Cited By

View all
  • (2024)Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array ProcessorsQuantum10.22331/q-2024-03-14-12818(1281)Online publication date: 14-Mar-2024
  • (2024)Robust Qubit Mapping Algorithm via Double-Source Optimal Routing on Large Quantum CircuitsACM Transactions on Quantum Computing10.1145/36802915:3(1-26)Online publication date: 19-Sep-2024
  • (2024)Compiling Conditional Quantum Gates without Using Helper QubitsProceedings of the ACM on Programming Languages10.1145/36564368:PLDI(1463-1484)Online publication date: 20-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ICCAD '20: Proceedings of the 39th International Conference on Computer-Aided Design
November 2020
1396 pages
ISBN:9781450380263
DOI:10.1145/3400302
  • General Chair:
  • Yuan Xie
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

In-Cooperation

  • IEEE CAS
  • IEEE CEDA
  • IEEE CS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 December 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. allocation
  2. layout synthesis
  3. mapping
  4. placement
  5. quantum computing
  6. scheduling

Qualifiers

  • Research-article

Conference

ICCAD '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 457 of 1,762 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)522
  • Downloads (Last 6 weeks)65
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array ProcessorsQuantum10.22331/q-2024-03-14-12818(1281)Online publication date: 14-Mar-2024
  • (2024)Robust Qubit Mapping Algorithm via Double-Source Optimal Routing on Large Quantum CircuitsACM Transactions on Quantum Computing10.1145/36802915:3(1-26)Online publication date: 19-Sep-2024
  • (2024)Compiling Conditional Quantum Gates without Using Helper QubitsProceedings of the ACM on Programming Languages10.1145/36564368:PLDI(1463-1484)Online publication date: 20-Jun-2024
  • (2024)A New Routing Strategy to Improve Success Rates of Quantum ComputersProceedings of the Great Lakes Symposium on VLSI 202410.1145/3649476.3658790(546-550)Online publication date: 12-Jun-2024
  • (2024)Invited: Leveraging Machine Learning for Quantum Compilation OptimizationProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3663510(1-4)Online publication date: 23-Jun-2024
  • (2024)Hybrid Circuit Mapping: Leveraging the Full Spectrum of Computational Capabilities of Neutral Atom Quantum ComputersProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3655959(1-6)Online publication date: 23-Jun-2024
  • (2024)SimuQ: A Framework for Programming Quantum Hamiltonian Simulation with Analog CompilationProceedings of the ACM on Programming Languages10.1145/36329238:POPL(2425-2455)Online publication date: 5-Jan-2024
  • (2024)Optimal Program Synthesis via Abstract InterpretationProceedings of the ACM on Programming Languages10.1145/36328588:POPL(457-481)Online publication date: 5-Jan-2024
  • (2024)QuCloud+: A Holistic Qubit Mapping Scheme for Single/Multi-programming on 2D/3D NISQ Quantum ComputersACM Transactions on Architecture and Code Optimization10.1145/363152521:1(1-27)Online publication date: 18-Jan-2024
  • (2024)Scheduling and Physical DesignProceedings of the 2024 International Symposium on Physical Design10.1145/3626184.3635290(219-225)Online publication date: 12-Mar-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media