Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1111/cgf.15187acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Robust and Artefact-Free Deformable Contact with Smooth Surface Representations

Published: 18 September 2024 Publication History

Abstract

Modeling contact between deformable solids is a fundamental problem in computer animation, mechanical design, and robotics. Existing methods based on C0-discretizations---piece-wise linear or polynomial surfaces---suffer from discontinuities and irregularities in tangential contact forces, which can significantly affect simulation outcomes and even prevent convergence. In this work, we show that these limitations can be overcome with a smooth surface representation based on Implicit Moving Least Squares (IMLS). In particular, we propose a self collision detection scheme tailored to IMLS surfaces that enables robust and efficient handling of challenging self contacts. Through a series of test cases, we show that our approach offers advantages over existing methods in terms of accuracy and robustness for both forward and inverse problems.

References

[1]
[AC91] Alart P., Curnier A.: A mixed formulation for frictional contact problems prone to newton like solution methods. Computer methods in applied mechanics and engineering 92, 3 (1991), 353--375. 2
[2]
[ADVDI03] Alliez P., De Verdire E. C., Devillers O., Isenburg M.: Isotropic surface remeshing. In 2003 Shape Modeling International. (2003), IEEE, pp. 49--58. 13
[3]
[Bar91] Baraff D.: Coping with friction for non-penetrating rigid body simulation. ACM SIGGRAPH computer graphics 25, 4 (1991), 31--41. 2
[4]
[Ber89] Bernardi C.: A new nonconforming approach to domain decomposition: the mortar element method. Nonlinear partial equations and their applications (1989). 2
[5]
[BFA02] Bridson R., Fedkiw R., Anderson J.: Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques (2002), pp. 594--603. 2
[6]
[BR97] Brun R., Rademakers F.: Root---an object oriented data analysis framework. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment 389, 1--2 (1997), 81--86. 8
[7]
[BW97] Bonet J., Wood R. D.: Nonlinear continuum mechanics for finite element analysis. Cambridge university press, 1997. 8
[8]
[CDHR08] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008), 1--14. 7
[9]
[CPS09] Cottle R. W., Pang J.-S., Stone R. E.: The linear complementarity problem. SIAM, 2009. 2
[10]
[Dav20] Daviet G.: Simple and scalable frictional contacts for thin nodal objects. ACM Transactions on Graphics (TOG) 39, 4 (2020), 61--1. 2
[11]
[DBDB11] Daviet G., Bertails-Descoubes F., Boissieux L.: A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Transactions on Graphics 30 (12 2011), 1--12.
[12]
[DLWW17] De Lorenzis L., Wriggers P., Weissenfels C.: Computational Contact Mechanics with the Finite Element Method. John Wiley & Sons, Ltd, 2017, pp. 1--45. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2033. 2
[13]
[EDSR19] Elandt R., Drumwright E., Sherman M., Ruina A.: A pressure field model for fast, robust approximation of net contact force and moment between nominally rigid objects. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019), IEEE, pp. 8238--8245. 2
[14]
[Erl18] Erleben K.: Methodology for assessing mesh-based contact point methods. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1--30. 7
[15]
[FL01] Fisher S., Lin M. C.: Deformed distance fields for simulation of non-penetrating flexible bodies. In Computer Animation and Simulation 2001: Proceedings of the Eurographics Workshop in Manchester, UK, September 2--3, 2001 (2001), Springer, pp. 99--111. 3
[16]
[FLS*21] Ferguson Z., Li M., Schneider T., Gil-Ureta F., Langlois T., Jiang C., Zorin D., Kaufman D. M., Panozzo D.: intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021). 2
[17]
[FPRJ00] Frisken S. F., Perry R. N., Rockwood A. P., Jones T. R.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (2000), pp. 249--254. 2
[18]
[Gas93] Gascuel M.-P.: An implicit formulation for precise contact modeling between flexible solids. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (1993), pp. 313--320. 3
[19]
[GHDS03] Grinspun E., Hirani A. N., Desbrun M., Schröder P.: Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation (2003), Citeseer, pp. 62--67. 8
[20]
[GHZ*20] Geilinger M., Hahn D., Zehnder J., Bächer M., Thomaszewski B., Coros S.: Add: Analytically differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--15. 2
[21]
[GJ*10] Guennebaud G., Jacob B., et al.: Eigen v3. http://eigen.tuxfamily.org, 2010. 7
[22]
[GRP91] Goyal S., Ruina A., Papadopoulos J.: Planar sliding with dry friction part 2. dynamics of motion. Wear 143, 2 (1991), 331--352. 2
[23]
[HTS*76] Hughes T. J., Taylor R. L., Sackman J. L., Curnier A., Kanoknukulchai W.: A finite element method for a class of contact-impact problems. Computer methods in applied mechanics and engineering 8, 3 (1976), 249--276. 2, 3
[24]
[HVS*09] Harmon D., Vouga E., Smith B., Tamstorf R., Grinspun E.: Asynchronous contact mechanics. ACM Transactions on Graphics 28 (7 2009). 2
[25]
[HVTG08] Harmon D., Vouga E., Tamstorf R., Grinspun E.: Robust treatment of simultaneous collisions. In ACM SIGGRAPH 2008 papers. 2008, pp. 1--4. 2
[26]
[JBS06] Jones M. W., Baerentzen J. A., Sramek M.: 3d distance fields: A survey of techniques and applications. IEEE Transactions on visualization and Computer Graphics 12, 4 (2006), 581--599. 2
[27]
[JM92] Jean M., Moreau J. J.: Unilaterality and dry friction in the dynamics of rigid body collections. In 1st Contact Mechanics International Symposium (1992), pp. 31--48. 2
[28]
[KDBB17] Koschier D., Deul C., Brand M., Bender J.: An hp-adaptive discretization algorithm for signed distance field generation. IEEE transactions on visualization and computer graphics 23, 10 (2017), 2208--2221. 2
[29]
[KE22] Kim T., Eberle D.: Dynamic deformables: Implementation and production practicalities (now with code!). In ACM SIGGRAPH 2022 Courses (New York, NY, USA, 2022), SIGGRAPH '22, Association for Computing Machinery. 3
[30]
[KEP05] Kaufman D. M., Edmunds T., Pai D. K.: Fast frictional dynamics for rigid bodies. In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005), SIGGRAPH '05, Association for Computing Machinery, p. 946--956. 2
[31]
[Kol08] Kolluri R.: Provably good moving least squares. ACM Transactions on Algorithms (TALG) 4, 2 (2008), 1--25. 3, 4
[32]
[KP03] Kry P. G., Pai D. K.: Continuous contact simulation for smooth surfaces. ACM Transactions on Graphics (TOG) 22, 1 (2003), 106--129. 2
[33]
[KSJP08] Kaufman D. M., Sueda S., James D. L., Pai D. K.: Staggered projections for frictional contact in multibody systems. In ACM SIGGRAPH Asia 2008 papers. 2008, pp. 1--11. 2
[34]
[KTS*14] Kaufman D. M., Tamstorf R., Smith B., Aubry J.-M., Grinspun E.: Adaptive nonlinearity for collisions in complex rod assemblies. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--12. 2
[35]
[LDN*18] Li J., Daviet G., Narain R., Bertails-Descoubes F., Overby M., Brown G. E., Boissieux L.: An implicit frictional contact solver for adaptive cloth simulation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15. 2
[36]
[LDW*22] LI Y., Du T., Wu K., Xu J., Matusik W.: Diffcloth: Differentiable cloth simulation with dry frictional contact. ACM Transactions on Graphics (TOG) 42, 1 (2022), 1--20. 2
[37]
[Lev04] Levin D.: Mesh-independent surface interpolation. In Geometric modeling for scientific visualization (2004), Springer, pp. 37--49. 3
[38]
[LFP21] Larionov E., Fan Y., Pai D. K.: Frictional contact on smooth elastic solids. ACM Trans. Graph. 40, 2 (Apr. 2021). 2, 3, 4
[39]
[LFS*20] Li M., Ferguson Z. A. H., Schneider T., Langlois T., Zorin D., Panozzo D., Jiang C., Kaufman D. M.: Incremental potential contact: intersection- and inversion-free, large-deformation dynamics. ACM Transactions on Graphics 39 (7 2020). 1, 2, 5
[40]
[LKJ21] Li M., Kaufman D. M., Jiang C.: Codimensional incremental potential contact. ACM Transactions on Graphics 40 (7 2021). 2, 3
[41]
[LKL*22] Lan L., Kaufman D. M., Li M., Jiang C., Yang Y.: Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv preprint arXiv:2201.10022 (2022). 2
[42]
[LYK*21] Lan L., Yang Y., Kaufman D., Yao J., Li M., Jiang C.: Medial ipc: accelerated incremental potential contact with medial elastics. ACM Transactions on Graphics 40, 4 (2021). 2
[43]
[MC95] Mirtich B., Canny J.: Impulse-based simulation of rigid bodies. In Proceedings of the 1995 symposium on Interactive 3D graphics (1995), pp. 181--ff. 2
[44]
[MEM*19] Macklin M., Erleben K., Müller M., Chentanez N., Jeschke S., Makoviychuk V.: Non-smooth newton methods for deformable multi-body dynamics. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--20. 2
[45]
[MEM*20] Macklin M., Erleben K., Müller M., Chentanez N., Jeschke S., Corse Z.: Local optimization for robust signed distance field collision. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020), 1--17. 3
[46]
[MMP88] Maday Y., Mavriplis C., Patera A.: Nonconforming mortar element methods: Application to spectral discretizations. Tech. rep., 1988. 2
[47]
[Mor11] Moreau J. J.: On unilateral constraints, friction and plasticity. New variational techniques in mathematical physics (2011), 171--322. 2
[48]
[MTGG11] Martin S., Thomaszewski B., Grinspun E., Gross M.: Example-based elastic materials. In ACM SIGGRAPH 2011 Papers (New York, NY, USA, 2011), SIGGRAPH '11, Association for Computing Machinery. 964921.1964967. 3
[49]
[MW88] Moore M., Wilhelms J.: Collision detection and response for computer animation. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques (1988), pp. 289--298. 2
[50]
[MZS*11] McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM SIGGRAPH 2011 papers. 2011, pp. 1--12. 3
[51]
[OGG09] Oztireli C., Guennebaud G., Gross M.: Feature preserving point set surfaces based on non-linear kernel regression. In Computer graphics forum (2009), vol. 28, pp. 493--501. 3, 11, 12
[52]
[OTSG09] Otaduy M. A., Tamstorf R., Steinemann D., Gross M.: Implicit contact handling for deformable objects. Computer Graphics Forum 28 (4 2009), 559--568. 2
[53]
[PHW19] Popov V., Hess M., Willert E.: Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems. Springer Berlin Heidelberg, 2019. URL: https://books.google.ch/books?id=OrhbvwEACAAJ. 2
[54]
[SOS04] Shen C., O'Brien J. F., Shewchuk J. R.: Interpolating and approximating implicit surfaces from polygon soup. In ACM SIGGRAPH 2004 Papers. 2004, pp. 896--904. 2
[55]
[TO02] Turk G., O'brien J. F.: Modelling with implicit surfaces that interpolate. ACM Transactions on Graphics (TOG) 21, 4 (2002), 855--873. 2
[56]
[VBG*13] Vaillant R., Barthe L., Guennebaud G., Cani M.-P., Rohmer D., Wyvill B., Gourmel O., Paulin M.: Implicit skinning: Real-time skin deformation with contact modeling. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--12. 3
[57]
[VGB*14] Vaillant R., Guennebaud G., Barthe L., Wyvill B., Cani M.-P.: Robust iso-surface tracking for interactive character skinning. ACM Transactions on Graphics (TOG) 33, 6 (2014), 1--11. 3
[58]
[VJ19] Verschoor M., Jalba A. C.: Efficient and accurate collision response for elastically deformable models. ACM Transactions on Graphics (TOG) 38, 2 (2019), 1--20. 2
[59]
[WZ04] Wriggers P., Zavarise G.: Computational Contact Mechanics. John Wiley & Sons, Ltd, 2004, ch. 6. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470091355.ecm033. 2
[60]
[ZD09] Zavarise G., De Lorenzis L.: The node-to-segment algorithm for 2d frictionless contact: Classical formulation and special cases. Computer Methods in Applied Mechanics and Engineering 198, 41 (2009), 3428--3451. URL: https://www.sciencedirect.com/science/article/pii/S0045782509002278, 2, 3

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '24: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
August 2024
276 pages

Sponsors

In-Cooperation

  • EUROGRAPHICS: The European Association for Computer Graphics

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 18 September 2024

Check for updates

Qualifiers

  • Research-article

Conference

SCA '24
Sponsor:
SCA '24: ACM SIGGRAPH/Eurographics Symposium on Computer Animation
August 21 - 23, 2024
Quebec, Montreal, Canada

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 8
    Total Downloads
  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)6
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media