Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1111/j.1467-8659.2011.01994.xacmconferencesArticle/Chapter ViewAbstractPublication PagesegConference Proceedingsconference-collections
Article

A ray tracing approach to diffusion curves

Published: 27 June 2011 Publication History

Abstract

Diffusion curves [OBW*08] provide a flexible tool to create smooth-shaded images from curves defined with colors. The resulting image is typically computed by solving a Poisson equation that diffuses the curve colors to the interior of the image. In this paper we present a new method for solving diffusion curves by using ray tracing. Our approach is analogous to final gathering in global illumination, where the curves define source radiance whose visible contribution will be integrated at a shading pixel to produce a color using stochastic ray tracing. Compared to previous work, the main benefit of our method is that it provides artists with extended flexibility in achieving desired image effects. Specifically, we introduce generalized curve colors called shaders that allow for the seamless integration of diffusion curves with classic 2D graphics including vector graphics (e.g. gradient fills) and raster graphics (e.g. patterns and textures). We also introduce several extended curve attributes to customize the contribution of each curve. In addition, our method allows any pixel in the image to be independently evaluated, without having to solve the entire image globally (as required by a Poisson-based approach). Finally, we present a GPU-based implementation that generates solution images at interactive rates, enabling dynamic curve editing. Results show that our method can easily produce a variety of desirable image effects.

References

[1]
AGARWALA A.: Efficient gradient-domain compositing using quadtrees. ACM Trans. Graph. 26 (2007). 3
[2]
BEZERRA H., EISEMANN E., DECARLO D., THOLLOT J.: Diffusion constraints for vector graphics. In Proc. of NPAR (2010), pp. 35-42. 1, 3, 4, 8
[3]
BOLZ J., FARMER I., GRINSPUN E., SCHRÖODER P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22 (2003), 917-924. 3
[4]
FARBMAN Z., HOFFER G., LIPMAN Y., COHEN-OR D., LISCHINSKI D.: Coordinates for instant image cloning. ACM Trans. Graph. 28 (2009), 67:1-67:9. 2, 3
[5]
FLOATER M. S.: Mean value coordinates. Comput. Aided Geom. Des. 20 (2003), 19-27. 2, 3, 4
[6]
FATTAL R., LISCHINSKI D., WERMAN M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21 (2002), 249-256. 3
[7]
HOBEROCK J., BELL N.: Thrust: A parallel template library, 2010. 5
[8]
JESCHKE S., CLINE D., WONKA P.: A GPU Laplacian solver for diffusion curves and Poisson image editing. ACM Trans. Graph. 28 (2009), 116:1-116:8. 1, 3
[9]
JESCHKE S., CLINE D., WONKA P.: Rendering surface details with diffusion curves. ACM Trans. Graph. 28 (2009), 117:1-117:8. 1, 3, 8
[10]
JESCHKE S., CLINE D., WONKA P.: Estimating color and texture parameters for vector graphics. Computer Graphics Forum 2, 30 (2011), to appear. 1, 3
[11]
JU T., SCHAEFER S., WARREN J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24 (2005), 561-566. 3, 4
[12]
KAJIYA J. T.: The rendering equation. SIGGRAPH Comput. Graph. 20 (1986), 143-150. 4
[13]
KAZHDAN M., HOPPE H.: Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph. 27 (2008), 21:1-21:10. 3
[14]
LIPMAN Y., KOPF J., COHEN-OR D., LEVIN D.: GPU-assisted positive mean value coordinates for mesh deformations. In Proc. of SGP (2007), pp. 117-123. 3
[15]
MCCANN J., POLLARD N. S.: Real-time gradientdomain painting. ACM Trans. Graph. 27 (2008), 93:1-93:7. 3
[16]
ORZAN A., BOUSSEAU A., WINNEMÖLLER H., BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27 (2008), 92:1-92:8. 1, 2, 7, 8
[17]
PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing. ACM Trans. Graph. 22 (2003), 313-318. 3
[18]
SUN J., JIA J., TANG C.-K., SHUM H.-Y.: Poisson matting. ACM Trans. Graph. 23 (2004), 315-321. 3
[19]
SUN J., LIANG L., WEN F., SHUM H.-Y.: Image vectorization using optimized gradient meshes. ACM Trans. Graph. 26 (2007). 2
[20]
TAKAYAMA K., SORKINE O., NEALEN A., IGARASHI T.: Volumetric modeling with diffusion surfaces. ACM Trans. Graph. 29 (2010), 180:1-180:8. 1, 2, 3
[21]
WINNEMÖLLER H., ORZAN A., BOISSIEUX L., THOLLOT J.: Texture design and draping in 2d images. Computer Graphics Forum 28, 4 (2009), 1091-1099. 1, 3

Cited By

View all
  • (2024)A Survey of Smooth Vector Graphics: Recent Advances in Repr esentation, Creation, Rasterization, and Image VectorizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.322057530:3(1652-1671)Online publication date: 1-Mar-2024
  • (2023)A Practical Walk-on-Boundary Method for Boundary Value ProblemsACM Transactions on Graphics10.1145/359210942:4(1-16)Online publication date: 26-Jul-2023
  • (2022)A Monte Carlo Method for Fluid SimulationACM Transactions on Graphics10.1145/3550454.355545041:6(1-16)Online publication date: 30-Nov-2022
  • Show More Cited By
  1. A ray tracing approach to diffusion curves

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    EGSR '11: Proceedings of the Twenty-second Eurographics conference on Rendering
    June 2011
    1368 pages

    Sponsors

    Publisher

    Eurographics Association

    Goslar, Germany

    Publication History

    Published: 27 June 2011

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A Survey of Smooth Vector Graphics: Recent Advances in Repr esentation, Creation, Rasterization, and Image VectorizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.322057530:3(1652-1671)Online publication date: 1-Mar-2024
    • (2023)A Practical Walk-on-Boundary Method for Boundary Value ProblemsACM Transactions on Graphics10.1145/359210942:4(1-16)Online publication date: 26-Jul-2023
    • (2022)A Monte Carlo Method for Fluid SimulationACM Transactions on Graphics10.1145/3550454.355545041:6(1-16)Online publication date: 30-Nov-2022
    • (2021)Vectorized Painting with Temporal Diffusion CurvesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.292980827:1(228-240)Online publication date: 1-Jan-2021
    • (2019)DiffusionMeshProceedings of the 45th Graphics Interface Conference10.20380/GI2019.26(1-8)Online publication date: 1-Jun-2019
    • (2018)Locally refinable gradient meshes supporting branching and sharp colour transitionsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1547-134:6-8(949-960)Online publication date: 1-Jun-2018
    • (2016)Ray-traced diffusion pointsACM SIGGRAPH 2016 Posters10.1145/2945078.2945085(1-2)Online publication date: 24-Jul-2016
    • (2015)A Vectorial Framework for Ray Traced Diffusion CurvesComputer Graphics Forum10.1111/cgf.1251034:1(253-264)Online publication date: 1-Feb-2015
    • (2014)Fast multipole representation of diffusion curves and pointsACM Transactions on Graphics10.1145/2601097.260118733:4(1-12)Online publication date: 27-Jul-2014
    • (2012)A vectorial solver for free-form vector gradientsACM Transactions on Graphics10.1145/2366145.236619231:6(1-9)Online publication date: 1-Nov-2012
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media