Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Applications of a Planar Separator Theorem

Published: 01 August 1980 Publication History

Abstract

Any n-vertex planar graph has the property that it can be divided into components of roughly equal size by removing only $O(\sqrt n )$ vertices. This separator theorem, in combination with a divide-and-conquer strategy, leads to many new complexity results for planar graph problems. This paper describes some of these results.

References

[1]
A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Efficient Computer Algorithms, Additon-Wesley, Reading, MA., 1974
[2]
Michael O. Albertson, Joan P. Hutchinson, On the independence ratio of a graph, J. Graph Theory, 2 (1978), 1–8
[3]
U. Bertele, F. Brioschi, Nonserial dynamic programming, Academic Press, New York, 1972xii+235
[4]
Stephen A. Cook, An observation on time-storage trade off, Fifth Annual ACM Symposium on Computing (Austin, Tex., 1973), Assoc. Comput. Mach., New York, 1973, 29–33
[5]
Richard A. DeMillo, Stanley C. Eisenstat, Richard J. Lipton, Preserving average proximity in arrays, Comm. ACM, 21 (1978), 228–231
[6]
David Dobkin, Richard J. Lipton, Multidimensional searching problems, SIAM J. Comput., 5 (1976), 181–186
[7]
P. Erdös, R. L. Graham, E. Szemerédi, On sparse graphs with dense long pathsComputers and mathematics with applications, Pergamon, Oxford, 1976, 365–369
[8]
H. Gabow, An efficient implementation of Edmonds' algorithm for maximum weight matching on graphs, Technical Report, CU-CS-075-75, University of Colorado, Boulder, Colorado, 1975
[9]
Michael R. Garey, David S. Johnson, Franco P. Preparata, Robert E. Tarjan, Triangulating a simple polygon, Inform. Process. Lett., 7 (1978), 175–179
[10]
J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), 345–363
[11]
L. Goldschlager, The monotone and planar circuit value problems are log space complete for P, ACM SIGACT News 9, 2 (1977), 25–29
[12]
John Hopcroft, Wolfgang Paul, Leslie Valiant, On time versus space, J. Assoc. Comput. Mach., 24 (1977), 332–337
[13]
T. Kameda, I. Munro, A $O(\mid V\mid \cdot \mid E\mid )$ algorithm for maximum matching of graphs, Computing (Arch. Elektron. Rechnen), 12 (1974), 91–98
[14]
O. Kariv, Masters Thesis, An O(n2.5) algorithm for findings maximum matchingon a general graph, Ph.D dissertation, Weizmann Institute of Science, Rehovot, Israel, 1976
[15]
D. Kirkpatrick, 1979, private communication
[16]
Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973xi+722 pp. (1 foldout), Sorting and Searching
[17]
Dexter Kozen, On parallelism in Turing machines, 17th Annual Symposium on Foundations of Computer Science (Houston, Tex., 1976), IEEE Comput. Soc., Long Beach, Calif., 1976, 89–97
[18]
R. J. Lipton, S. C. Eisenstat, R. A. DeMillo, Space and time hierarchies for classes of control structures and data structures, J. Assoc. Comput. Mach., 23 (1976), 720–732
[19]
Richard J. Lipton, Donald J. Rose, Robert Endre Tarjan, Generalized nested dissection, SIAM J. Numer. Anal., 16 (1979), 346–358
[20]
Richard J. Lipton, Robert Endre Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), 177–189
[21]
R. J. Lipton, R. E. Tarjan, Applications of a planar separator theorem, Proc. 18th Annual Symp. on Foundations of Computer Science, 1977, 162–170
[22]
Harold C. Martin, Graham F. Carey, Introduction to finite element analysis, McGraw-Hill Book Co., New York, 1973xiii+386
[23]
M. S. Paterson, C. E. Hewitt, Comparative schematology, Record of Project MAC Conf. on Concurrent Systems and Parallel Computation, 1970, 119–128
[24]
Michael S. Paterson, Tape bounds for time-bounded Turing machines, J. Comput. System Sci., 6 (1972), 116–124
[25]
Wolfgang J. Paul, Robert Endre Tarjan, James R. Celoni, Space bounds for a game on graphs, Math. Systems Theory, 10 (1976/77), 239–251
[26]
Arnold L. Rosenberg, Managing storage for extendible arrays, SIAM J. Comput., 4 (1975), 287–306
[27]
Arnie Rosenthal, Nonserial dynamic programming is optimal, Conference Record of the Ninth Annual ACM Symposium on Theory of Computing (Boulder, Colo., 1977), Assoc. Comput. Mach., New York, 1977, 98–105
[28]
Ravi Sethi, Complete register allocation problems, SIAM J. Comput., 4 (1975), 226–248
[29]
M. J. Shamos, Geometric complexity, Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N.M., 1975), Assoc. Comput. Mach., New York, 1975, 224–233
[30]
N. Sider, Masters Thesis, Partial colorings and limiting chromatic numbers, Ph.D. dissertation, Syracuse University, Syracuse, NY, 1971
[31]
Leslie G. Valiant, On non-linear lower bounds in computational complexity, Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N. M., 1975), Assoc. Comput. Mach., New York, 1975, 45–53
[32]
Peter Ungar, A theorem on planar graphs, J. London Math. Soc., 26 (1951), 256–262
[33]
L. G. Valiant, Graph-theoretic arguments in low-level complexity, 1977, Computer Science Dept., University of Edinburgh

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing  Volume 9, Issue 3
Aug 1980
224 pages
ISSN:0097-5397
DOI:10.1137/smjcat.1980.9.issue-3
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 August 1980

Author Tags

  1. algorithm
  2. Boolean circuit complexity
  3. divide-and-conquer
  4. graph embedding
  5. lower bounds
  6. matching
  7. maximum independent set
  8. nonserial dynamic programming
  9. pebbling
  10. planar graphs
  11. separator
  12. space-time tradeoffs

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Convergence of datalog over (Pre-) SemiringsJournal of the ACM10.1145/364302771:2(1-55)Online publication date: 10-Apr-2024
  • (2024)Greedy Spanners in Euclidean Spaces Admit Sublinear SeparatorsACM Transactions on Algorithms10.1145/359077120:3(1-30)Online publication date: 21-Jun-2024
  • (2024)Survey of vector database management systemsThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-024-00864-x33:5(1591-1615)Online publication date: 1-Sep-2024
  • (2023)Pliability and Approximating Max-CSPsJournal of the ACM10.1145/362651570:6(1-43)Online publication date: 30-Nov-2023
  • (2023)Convergence of Datalog over (Pre-) SemiringsACM SIGMOD Record10.1145/3604437.360445452:1(75-82)Online publication date: 8-Jun-2023
  • (2023)Min-Deviation-Flow in Bi-directed Graphs for T-Mesh QuantizationACM Transactions on Graphics10.1145/359243742:4(1-25)Online publication date: 26-Jul-2023
  • (2023)Almost Optimal Exact Distance Oracles for Planar GraphsJournal of the ACM10.1145/358047470:2(1-50)Online publication date: 25-Mar-2023
  • (2023)Maximum Matchings in Geometric Intersection GraphsDiscrete & Computational Geometry10.1007/s00454-023-00564-370:3(550-579)Online publication date: 9-Sep-2023
  • (2023)Better Distance Labeling for Unweighted Planar GraphsAlgorithmica10.1007/s00453-023-01133-z85:6(1805-1823)Online publication date: 15-May-2023
  • (2023)Orthogonal drawings of graphs for the automation of VLSI circuit designJournal of Computer Science and Technology10.1007/BF0294878614:5(447-459)Online publication date: 22-Mar-2023
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media