Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Interpolatory Projection Methods for Parameterized Model Reduction

Published: 01 October 2011 Publication History

Abstract

We provide a unifying projection-based framework for structure-preserving interpolatory model reduction of parameterized linear dynamical systems, i.e., systems having a structured dependence on parameters that we wish to retain in the reduced-order model. The parameter dependence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are able to give conditions under which the gradient and Hessian of the system response with respect to the system parameters is matched in the reduced-order model. We provide a systematic approach built on established interpolatory $\mathcal{H}_2$ optimal model reduction methods that will produce parameterized reduced-order models having high fidelity throughout a parameter range of interest. For single input/single output systems with parameters in the input/output maps, we provide reduced-order models that are optimal with respect to an $\mathcal{H}_2\otimes\mathcal{L}_2$ joint error measure. The capabilities of these approaches are illustrated by several numerical examples from technical applications.

References

[1]
N. Alexandrov, J. E. Dennis Jr., R. M. Lewis, and V. Torczon, A trust region framework for managing the use of approximation models in optimization, Structural Optimization, 15 (1998), pp. 16-23.
[2]
M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An `empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667-672.
[3]
U. Baur and P. Benner, Model reduction for parametric systems using balanced truncation and interpolation, at-Automatisierungstechnik, 57 (2009), pp. 411-420 (in German).
[4]
C. A. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Systems Control Lett., 58 (2008), pp. 225-232.
[5]
B. N. Bond and L. Daniel, Parameterized model order reduction of nonlinear dynamical systems, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD-2005), 2005, pp. 487-494.
[6]
B. N. Bond and L. Daniel, A piecewise-linear moment-matching approach to parameterized model-order reduction for highly nonlinear systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 26 (2007), pp. 2116-2129.
[7]
A. Bryson, Second-order algorithm for optimal model order reduction, J. Guidance Control Dynamics, 13 (1990), pp. 887-892.
[8]
T. Bui-Thanh, K. Willcox, and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput., 30 (2008), pp. 3270-3288.
[9]
H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004), pp. 147-269.
[10]
A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, $H_2$-norm optimal model reduction for large scale discrete dynamical mimo systems, J. Comput. Appl. Math., 233 (2010), pp. 1202-1216.
[11]
D. G. Cacuci, Sensitivity and Uncertainty Analysis, Vol. I: Theory, Chapman & Hall/CRC, Boca Raton, FL, 2003.
[12]
L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, and J. White, A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 23 (2004), pp. 678-693.
[13]
C. De Villemagne and R. E. Skelton, Model reductions using a projection formulation, Internat. J. Control, 46 (1987), pp. 2141-2169.
[14]
R. Eid, B. Salimbahrami, B. Lohmann, E. B. Rudnyi, and J. G. Korvink, Parametric order reduction of proportionally damped second-order systems, Sensors and Materials, 19 (2007), pp. 149-164.
[15]
O. Farle, V. Hill, P. Ingelström, and R. Dyczij-Edlinger, Multi-parameter polynomial order reduction of linear finite element models, Math. Comput. Model. Dyn. Syst., 14 (2008), pp. 421-434.
[16]
P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14 (1995), pp. 639-649.
[17]
L. Feng, Parameter independent model order reduction, Math. Comput. Simulation, 68 (2005), pp. 221-234.
[18]
L. Feng and P. Benner, A robust algorithm for parametric model order reduction, Proc. Appl. Math. Mech., 7 (2008), pp. 1021501-1021502; available online from http://dx.doi.org/10.1002/pamm.200700749.
[19]
L. Feng, E. B. Rudnyi, and J. G. Korvink, Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 24 (2005), pp. 1838-1847.
[20]
K. Gallivan, E. J. Grimme, and P. Van Dooren, Asymptotic waveform evaluation via a Lanczos method, Appl. Math. Lett., 7 (1994), pp. 75-80.
[21]
K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO systems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 328-349.
[22]
M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 575-605.
[23]
M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics, Santander 2005, L. M. Pardo et al., eds., London Math. Soc. Lecture Note Ser. 331, Cambridge University Press, Cambridge, 2006, pp. 106-161.
[24]
E. J. Grimme, Krylov projection methods for model reduction, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1997.
[25]
S. Gugercin, A. C. Antoulas, and C. Beattie, $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609-638.
[26]
P. K. Gunupudi, R. Khazaka, and M. S. Nakhla, Analysis of transmission line circuits using multidimensional model reduction techniques, IEEE Trans. Adv. Packaging, 25 (2002), pp. 174-180.
[27]
P. K. Gunupudi, R. Khazaka, M. S. Nakhla, T. Smy, and D. Celo, Passive parameterized time-domain macromodels for high-speed transmission-line networks, IEEE Trans. Microwave Theory and Techniques, 51 (2003), pp. 2347-2354.
[28]
B. Haasdonk, M. Ohlberger, and G. Rozza, A reduced basis method for evolution schemes with parameter-dependent explicit operators, Electron. Trans. Numer. Anal., 32 (2008), pp. 145-161.
[29]
Y. Halevi, Frequency weighted model reduction via optimal projection, IEEE Trans. Automat. Control, 37 (1992), pp. 1537-1542.
[30]
K. R. Heloue, S. Onaissi, and F. N. Najm, Efficient block-based parameterized timing analysis covering all potentially critical paths, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2008), 2008, pp. 173-180.
[31]
D. Hyland and D. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore, IEEE Trans. Automat. Control, 30 (1985), pp. 1201-1211.
[32]
K. Ito and S. S. Ravindran, A reduced basis method for control problems governed by PDEs, in Control and Estimation of Distributed Parameter Systems, W. Desch et al., eds., Int. Ser. Numer. Math. 126, Birkhäuser, Basel, 1998, pp. 153-168.
[33]
D. R. Jones, A taxonomy of global optimization methods based on response surfaces, J. Global Optim., 21 (2001), pp. 345-383.
[34]
D. G. Krige, A statistical approach to some basic mine valuation problems on the Witwatersrand, J. Chemical Metallurgical and Mining Society of South Africa, 52 (1951), pp. 119-139.
[35]
C. J. M. Lasance, Two benchmarks to facilitate the study of compact thermal modelingphenomena, IEEE Trans. Components and Packaging Technologies, 24 (2001), pp. 559-565.
[36]
A. Lepschy, G. A. Mian, G. Pinato, and U. Viaro, Rational $L^2$ approximation: A non-gradient algorithm, in Proceedings of the 30th IEEE Conference on Decision and Control, 1991, pp. 2321-2323.
[37]
A. T.-M. Leung and R. Khazaka, Parametric model order reduction technique for design optimization, in IEEE Internat. Symposium on Circuits and Systems (ISCAS), 2005, pp. 1290-1293.
[38]
M. Ma, A. T.-M. Leung, and R. Khazaka, Sparse macromodels for parametric networks, in IEEE Internat. Symposium on Circuits and Systems (ISCAS), 2006, pp. 2545-2548.
[39]
Y. Maday and E. M. Rønquist, A reduced-basis element method, C. R. Math. Acad. Sci. Paris, 335 (2002), pp. 195-200.
[40]
L. Meier III and D. Luenberger, Approximation of linear constant systems, IEEE Trans. Automat. Control, 12 (1967), pp. 585-588.
[41]
K. Moosmann and J. G. Korvink, Automatic parametric MOR for MEMS design, in Tagungsband GMA-FA 1.30 “Modellbildung, Identifikation und Simulation in der Automatisierungstechnik,” Workshop am Bostalsee, 27.-29.9.2006, B. Lohmann and A. Kugi, eds., 2006, pp. 89-99.
[42]
J. R. Phillips, Variational interconnect analysis via PMTBR, in Proceedings of ICCAD, 2004, pp. 872-879.
[43]
M. Rewieński and J. White, Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra Appl., 415 (2006), pp. 426-454.
[44]
J. T. Spanos, M. H. Milman, and D. L. Mingori, A new algorithm for $L^2$ optimal model reduction, Automatica J. IFAC, 28 (1992), pp. 897-909.
[45]
M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York, 1999.
[46]
P. Van Dooren, K. A. Gallivan, and P.-A. Absil, $\mathcal{H}_2$-optimal model reduction of MIMO systems, Appl. Math. Lett., 21 (2008), pp. 1267-1273.
[47]
D. Vasilyev, M. Rewieński, and J. White, A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS, in Proceedings of Design Automation Conference (DAC), 2003, pp. 490-495.
[48]
C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan, D. K. Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett, First-order incremental block-based statistical timing analysis, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 25 (2006), pp. 2170-2180.
[49]
D. S. Weile, E. Michielssen, E. J. Grimme, and K. A. Gallivan, A method for generating rational interpolant reduced order models of two-parameter linear systems, Appl. Math. Lett., 12 (1999), pp. 93-102.
[50]
D. A. Wilson, Optimum solution of model-reduction problem, Proc. Inst. Elec. Eng., 117 (1970), pp. 1161-1165.
[51]
W. Y. Yan and J. Lam, An approximate approach to $h^2$ optimal model reduction, IEEE Trans. Automat. Control, 44 (1999), pp. 1341-1358.
[52]
A. Yousuff and R. E. Skelton, Covariance equivalent realizations with applications to model reduction of large-scale systems, Control and Dynamic Systems, 22 (1985), pp. 273-348.
[53]
A. Yousuff, D. Wagie, and R. E. Skelton, Linear system approximation via covariance equivalent realizations, J. Math. Anal. Appl., 106 (1985), pp. 91-115.
[54]
C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations (Kiel, 1990), Notes Numer. Fluid Mech. 31, Vieweg, Braunschweig, 1991, pp. 241-251.
[55]
D. Zigic, L. T. Watson, and C. A. Beattie, Contragredient transformations applied to the optimal projection equations, Linear Algebra Appl., 188 (1993), pp. 665-676.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 33, Issue 5
Special Section: 2010 Copper Mountain Conference
2011
972 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 October 2011

Author Tags

  1. interpolation
  2. parameterized model reduction
  3. rational Krylov

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Improved model reduction with basis enrichment for dynamic analysis of nearly periodic structures including substructures with geometric changesJournal of Computational and Applied Mathematics10.1016/j.cam.2024.115844445:COnline publication date: 1-Aug-2024
  • (2024) optimal rational approximation on general domainsAdvances in Computational Mathematics10.1007/s10444-024-10125-850:3Online publication date: 1-Jun-2024
  • (2023)MWCAWEJournal of Computational Physics10.1016/j.jcp.2023.112319490:COnline publication date: 1-Oct-2023
  • (2023)Model reduction for the material point method via an implicit neural representation of the deformation mapJournal of Computational Physics10.1016/j.jcp.2023.111908478:COnline publication date: 1-Apr-2023
  • (2023)A method for improving the accuracy of PODI-RBF solutions for the indentation of an elastic body by a rigid indenterFinite Elements in Analysis and Design10.1016/j.finel.2022.103906216:COnline publication date: 1-Apr-2023
  • (2023)Parallel model order reduction methods based on structured matrix analysis for discrete-time systems with parametric uncertaintyJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115088426:COnline publication date: 1-Jul-2023
  • (2023)Hierarchical Model Reduction Driven by Machine Learning for Parametric Advection-Diffusion-Reaction Problems in the Presence of Noisy DataJournal of Scientific Computing10.1007/s10915-022-02073-694:2Online publication date: 6-Jan-2023
  • (2022)Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencodersEngineering Applications of Artificial Intelligence10.1016/j.engappai.2021.104652109:COnline publication date: 1-Mar-2022
  • (2021)Parametric model reduction via rational interpolation along parameters2021 60th IEEE Conference on Decision and Control (CDC)10.1109/CDC45484.2021.9682841(6895-6900)Online publication date: 14-Dec-2021
  • (2020)Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencodersJournal of Computational Physics10.1016/j.jcp.2019.108973404:COnline publication date: 1-Mar-2020
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media