Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

An Online Method for Interpolating Linear Parametric Reduced-Order Models

Published: 01 September 2011 Publication History

Abstract

A two-step online method is proposed for interpolating projection-based linear parametric reduced-order models (ROMs) in order to construct a new ROM for a new set of parameter values. The first step of this method transforms each precomputed ROM into a consistent set of generalized coordinates. The second step interpolates the associated linear operators on their appropriate matrix manifold. Real-time performance is achieved by precomputing inner products between the reduced-order bases underlying the precomputed ROMs. The proposed method is illustrated by applications in mechanical and aeronautical engineering. In particular, its robustness is demonstrated by its ability to handle the case where the sampled parameter set values exhibit a mode veering phenomenon.

References

[1]
T. Lieu, C. Farhat, and M. Lesoinne, Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5730-5742.
[2]
B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17-32.
[3]
M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), pp. 1893-1925.
[4]
L. Sirovich, Turbulence and the dynamics of coherent structures. Part 1: Coherent structures, Quart. Appl. Math., 45 (1987), pp. 561-571.
[5]
A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005.
[6]
B.I. Epureanu, A parametric analysis of reduced order models of viscous flows in turbomachinery, J. Fluid. Struct., 17 (2003), pp. 971-982.
[7]
C. Homescu, L.R. Petzold, and R. Serban, Error estimation for reduced-order models of dynamical systems, SIAM J. Numer. Anal., 43 (2005), pp. 1693-1714.
[8]
R. Serban, C. Homescu, and L.R. Petzold, The effect of problem perturbations on nonlinear dynamical systems and their reduced-order models, SIAM J. Sci. Comput., 29 (2007), pp. 2621-2643.
[9]
T. Lieu and C. Farhat, Adaptation of aeroelastic reduced-order models and application to an F-$16$ configuration, AIAA J., 45 (2007), pp. 1244-1269.
[10]
D. Amsallem and C. Farhat, Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46 (2008), pp. 1803-1813.
[11]
K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows, J. Comput. Phys., 143 (1998), pp. 403-425.
[12]
J. Taylor and M. Glauser, Towards practical flow sensing and control via POD and LSE based low-dimensional tools, in Proceedings of the 2002 ASME Fluids Engineering Division Summer Meeting, 2002, pp. 1-9.
[13]
T. Bechtold, D. Hohlfeld, E.B. Rudnyi, and M. Günther, Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction, J. Micromec. Microeng., 20 (2010), 045030.
[14]
G. Rozza, D.B.P. Huynh, and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Method Engrg., 15 (2007), pp. 229-275.
[15]
B. Haasdonk and M. Ohlberger, Efficient reduced models and a-posteriori error estimation for parametrized dynamical systems by offline/online decomposition, Math. Comput. Model. Dynam., 17 (2011), pp. 145-161.
[16]
L. Daniel, O.C. Siong, L.S. Chay, K.H. Lee, and J. White, A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models, IEEE Trans. Comput. Aided Des., 23 (2004), pp. 678-693.
[17]
T. Bui-Thanh, K. Willcox, and O. Ghattas, Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA J., 46 (2008), pp. 2520-2529.
[18]
C. Gu and J. Roychowdhury, Model reduction via projection onto nonlinear manifolds, with applications to analog circuits and biochemical systems, in Proceedings of the IEEE/ACM 2008 International Conference on Computer-Aided Design, 2008, pp. 85-92.
[19]
A. Hay, J. Borggaard, I. Akhtar, and D. Pelletier, Reduced-order models for parameter dependent geometries based on shape sensitivity analysis, J. Comput. Phys., 229 (2010), pp. 1327-1352.
[20]
D. Amsallem, J. Cortial, and C. Farhat, Toward real-time CFD-based aeroelastic computations using a database of reduced-order information, AIAA J., 48 (2010), pp. 2029-2037.
[21]
D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat, A method for interpolating on manifolds structural dynamics reduced-order models, Internat. J. Numer. Methods Engrg., 80 (2009), pp. 1241-1258.
[22]
J. Degroote, J. Virendeels, and K. Willcox, Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis, Internat. J. Numer. Methods Fluids, 63 (2010), pp. 207-230.
[23]
U. Baur and P. Benner, Modellreduktion für parametrisierte systeme durch balanciertes abschneiden und interpolation, Automatisierungstechnik, 57 (2009), pp. 411-419.
[24]
K. Carlberg, C. Bou-Mosleh, and C. Farhat, Efficient nonlinear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86 (2011), pp. 155-181.
[25]
M. Rewieński and J. White, Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra Appl., 415 (2006), pp. 426-454.
[26]
B. Lohmann and R. Eid, Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models, in Methoden und Anwendungen der Regelungstechnik. Erlangen-Münchener Workshops 2007 und 2008, Shaker Verlag, Aachen, 2009, pp. 1-20.
[27]
R. Eid, B. Lohmann, and H. Panzer, Interpolation-based parametric model reduction using Krylov subspaces, in Autumn School on Future Developments in MOR, Terschelling, 22 September 2009, pp. 1-9.
[28]
H. Panzer, J. Mohring, R. Eid, and B. Lohmann Parametric model order reduction by matrix interpolation, Automatisierungstechnik, 58 (2010), pp. 475-484.
[29]
U. Helmke and J.B. Moore, Optimization and Dynamical Systems, Springer-Verlag, London, 1994.
[30]
G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
[31]
D.J. Ewins, Modal Testing, Theory, Practice and Application, 2nd ed., Research Study Press LTD, Philadelphia, 2000.
[32]
J. O'Callahan, Correlation considerations—Part $4$ (Modal vector correlation techniques), in Proceedings of the International Modal Analysis Conference, 1998, pp. 197-206.
[33]
T.S. Kim and Y.Y. Kim, Mac-based mode tracking in structural topology optimization, Comput. Struct., 74 (2000), pp. 375-383.
[34]
O. Brüls, P. Duysinx, and J.C. Golinval, The global modal parameterization for non-linear model-order reduction in flexible multibody dynamics, Internat. J. Numer. Methods Engrg., 69 (2007), pp. 958-977.
[35]
H.J.-P. Morand and R. Ohayon, Fluid-Structure Interaction, Wiley, New York, 1995.
[36]
G.H.K. Heirman, F. Naets, and W. Desmet, A system-level model reduction technique for the efficient simulation of flexible multibody systems, Internat. J. Numer. Methods Engrg., 85 (2011), pp. 330-354.
[37]
N.G. Stephen, On veering of eigenvalue loci, J. Vib. Acoust., 131 (2009), 054501.
[38]
E.C. Yates, Agard standard aeroelastic configurations for dynamic response, candidate configuration I. Wing $445.6$, NASA TM-100462, Langley Research Center, Hampton, VA, 1987.
[39]
E.K. Chiu and C. Farhat, Effects of Fuel Slosh on Flutter Prediction, AIAA Paper 2009-2682, AIAA, Reston, VA, 2009.
[40]
C. Lieberman, K. Willcox, and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput., 32 (2010), pp. 2523-2542.

Cited By

View all
  • (2024)Data-driven models of nonautonomous systemsJournal of Computational Physics10.1016/j.jcp.2024.112976507:COnline publication date: 15-Jun-2024
  • (2024)Improved model reduction with basis enrichment for dynamic analysis of nearly periodic structures including substructures with geometric changesJournal of Computational and Applied Mathematics10.1016/j.cam.2024.115844445:COnline publication date: 1-Aug-2024
  • (2024)On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fieldsAdvances in Computational Mathematics10.1007/s10444-024-10189-650:5Online publication date: 1-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 33, Issue 5
Special Section: 2010 Copper Mountain Conference
2011
972 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 September 2011

Author Tags

  1. interpolation
  2. matrix manifolds
  3. mode veering
  4. parametric model reduction
  5. real-time computing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Data-driven models of nonautonomous systemsJournal of Computational Physics10.1016/j.jcp.2024.112976507:COnline publication date: 15-Jun-2024
  • (2024)Improved model reduction with basis enrichment for dynamic analysis of nearly periodic structures including substructures with geometric changesJournal of Computational and Applied Mathematics10.1016/j.cam.2024.115844445:COnline publication date: 1-Aug-2024
  • (2024)On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fieldsAdvances in Computational Mathematics10.1007/s10444-024-10189-650:5Online publication date: 1-Oct-2024
  • (2023)DRIPSJournal of Computational Physics10.1016/j.jcp.2023.112455493:COnline publication date: 15-Nov-2023
  • (2023)Operator inference with roll outs for learning reduced models from scarce and low-quality dataComputers & Mathematics with Applications10.1016/j.camwa.2023.06.012145:C(224-239)Online publication date: 1-Sep-2023
  • (2023)Parallel model order reduction methods based on structured matrix analysis for discrete-time systems with parametric uncertaintyJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115088426:COnline publication date: 1-Jul-2023
  • (2023)A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolationAdvances in Computational Mathematics10.1007/s10444-023-10016-449:2Online publication date: 20-Mar-2023
  • (2022)Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order basesJournal of Computational Physics10.1016/j.jcp.2022.111120458:COnline publication date: 1-Jun-2022
  • (2020)Enhanced model-order reduction approach via online adaptation for parametrized nonlinear structural problemsComputational Mechanics10.1007/s00466-019-01771-765:2(331-353)Online publication date: 1-Feb-2020
  • (2019)Galerkin-free model reduction for fluid-structure interaction using proper orthogonal decompositionJournal of Computational Physics10.1016/j.jcp.2019.06.073396:C(579-595)Online publication date: 1-Nov-2019
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media