Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Quasi-algebraic Multigrid Approach to Fracture Problems Based on Extended Finite Elements

Published: 01 March 2012 Publication History

Abstract

The modeling of discontinuities arising from fracture of materials poses a number of significant computational challenges. The extended finite element method provides an attractive alternative to standard finite elements in that they do not require fine spatial resolution in the vicinity of discontinuities nor do they require repeated remeshing to properly address propagation of cracks. They do, however, give rise to linear systems requiring special care within an iterative solver method. An algebraic multigrid method is proposed that is suitable for the linear systems associated with modeling fracture via extended finite elements. The new method follows naturally from an energy minimizing algebraic multigrid framework. The key idea is the modification of the prolongator sparsity pattern to prevent interpolation across cracks. This is accomplished by accessing the standard levelset functions used during the discretization process. Numerical experiments illustrate that the resulting method converges in a fashion that is relatively insensitive to mesh resolution and to the number of cracks or their location.

References

[1]
T. Belytschko and T. Black, Elastic growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 43 (1999), pp. 131-150.
[2]
T. Belytschko, R. Gracie, and G. Ventura, A Review of Extended/Generalized Finite Element Models for Material Modeling, Model. Simul. Materials Sci. Engrg. 17, Birkhaüser, Basel, 2009, pp. 1-24.
[3]
L. Berger-Vergiat, H. Waisman, B. Hiriyur, R. Tuminaro, and D. Keyes, Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods, Internat. J. Numer. Methods Engrg., (2011); also available online from http://dx.doi.org/10.1002/nme.3318.
[4]
A. Brandt, Multigrid Techniques: $1984$ Guide with Applications to Fluid Dynamics, Technical report 85, GMD-Studie, Sankt Augustin, West Germany, 1984.
[5]
A. Brandt, General highly accurate algebraic coarsening, Electron. Trans. Numer. Anal., 10 (2000), pp. 1-20.
[6]
A. Brandt, Multiscale scientific computation: Review 2001, in Multiscale Multiresolution Methods, Springer-Verlag, Berlin, 2001, pp. 1-96.
[7]
J. Brannick and L. Zikatanov, Algebraic multigrid methods based on compatible relaxation and energy minimization, in Domain Decomposition Methods in Science and Engineering XVI, O. Widlund and D. E. Keyes, eds., Lecture Notes in Comput. Sci. Engrg. 55, Springer-Verlag, Berlin, 2007, pp. 15-26.
[8]
W. L. Briggs, V. E. Henson, and S. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia, 2000.
[9]
L. M. Carvalho, L. Giraud, and P. L. Tallec, Algebraic two-level preconditioners for the Schur complement method, SIAM J. Sci. Comput., 22 (1998), pp. 200-1.
[10]
D. Cho and L. Zikatanov, A multilevel preconditioning for generalized finite element method problems on unstructured simplicial meshes, J. Numer. Math., 15 (2007), pp. 163-180.
[11]
W. Hackbusch, Multigrid Methods and Applications, Comput. Math. 4, Springer-Verlag, Berlin, 1985.
[12]
M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, and K. Stanley, An overview of the Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397-423.
[13]
D. Keyes and W. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation, SIAM J. Sci. Statist. Comput., 8 (1987), pp. s166-s202.
[14]
T. V. Kolev and P. S. Vassilevski, AMG by element agglomeration and constrained energy minimization interpolation, Numer. Linear Algebra Appl., 13 (2006), pp. 771-788.
[15]
S. Loehnert and T. Belytschko, A multiscale projection method for macro/microcrack simulations, Internat. J. Numer. Methods Engrg., 71 (2007), pp. 1466-1482.
[16]
J. Mandel, M. Brezina, and P. Vaněk, Energy optimization of algebraic multigrid bases, Computing, 62 (1999), pp. 205-228.
[17]
S. McCormick and J. Ruge, Multigrid methods for variational problems, SIAM J. Numer. Anal., 19 (1982), pp. 924-929.
[18]
J. M. Melenk and I. Babus˘ka, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996), pp. 289-314.
[19]
A. Menk and S. Bordas, A robust preconditioning technique for the extended finite element method, Internat. J. Numer. Methods Engrg., 85 (2011), pp. 1609-1632.
[20]
N. Moes, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46 (1999), pp. 131-150.
[21]
S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures, Blackwell, Oxford, UK, 2008.
[22]
L. N. Olson, J. Schroder, and R. S. Tuminaro, A general interpolation strategy for algebraic multigrid using energy minimization, J. Comput. Phys., 33 (2011), pp. 966-991.
[23]
J. Rannou, A. Gravouil, and A. Combescure, A multigrid extended finite element method for elastic crack growth simulation, Eur. J. Comp. Mech., 16 (2007), pp. 161-182.
[24]
J. Shi, D. Chopp, J. Lua, N. Sukumar, and T. Belytschko, Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions, Engrg. Fracture Mech., 77 (2010), pp. 2840-2863.
[25]
C. Siefert and E. de Sturler, Probing methods for saddle point problems, Electron. Trans. Numer. Anal., 22 (2006), pp. 163-183.
[26]
R. Taylor, FEAP: A Finite Element Analysis Program, http://www.ce.berkeley.edu/projects/feap/parmanual.pdf (2001).
[27]
U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
[28]
R. Tuminaro and C. Tong, Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines, in SuperComputing 2000 Proceedings, J. Donnelley, ed., 2000.
[29]
P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math., 88 (2001), pp. 559-579.
[30]
P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order problems, Computing, 56 (1996), pp. 179-196.
[31]
P. S. Vassilevski, General constrained energy minimization interpolation mappings for AMG, SIAM J. Sci. Comput., 32 (2010), pp. 1-13.
[32]
C. Wagner, On the algebraic construction of multilevel transfer operators, Computing, 65 (2000), pp. 73-95.
[33]
W. L. Wan, T. F. Chan, and B. Smith, An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput., 21 (2000), pp. 1632-1649.
[34]
P. Wriggers, Computational Contact Mechanics, Wiley, New York, 2002.
[35]
J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods, Comput. Vis. Sci., 7 (2004), pp. 121-127(7).
[36]
J. Xu and L. T. Zikatanov, On multigrid methods for generalized finite element methods, in Meshfree Methods for Partial Differential Equations (Bonn, 2001), Lecture Notes in Comput. Sci. Engrg. 26, Springer-Verlag, Berlin, 2003, pp. 401-418.

Cited By

View all
  • (2021)Embedded unit cell homogenization model for localized non-periodic elasto-plastic zonesComputational Mechanics10.1007/s00466-021-02077-368:6(1437-1456)Online publication date: 1-Dec-2021
  • (2019)Multigrid solvers for immersed finite element methods and immersed isogeometric analysisComputational Mechanics10.1007/s00466-019-01796-y65:3(807-838)Online publication date: 26-Nov-2019
  • (2015)Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problemsComputational Mechanics10.1007/s00466-015-1135-455:4(771-787)Online publication date: 1-Apr-2015
  1. A Quasi-algebraic Multigrid Approach to Fracture Problems Based on Extended Finite Elements

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Scientific Computing
    SIAM Journal on Scientific Computing  Volume 34, Issue 2
    April 2012
    829 pages

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 March 2012

    Author Tags

    1. algebraic multigrid
    2. extended finite elements
    3. fracture
    4. iterative methods

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Embedded unit cell homogenization model for localized non-periodic elasto-plastic zonesComputational Mechanics10.1007/s00466-021-02077-368:6(1437-1456)Online publication date: 1-Dec-2021
    • (2019)Multigrid solvers for immersed finite element methods and immersed isogeometric analysisComputational Mechanics10.1007/s00466-019-01796-y65:3(807-838)Online publication date: 26-Nov-2019
    • (2015)Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problemsComputational Mechanics10.1007/s00466-015-1135-455:4(771-787)Online publication date: 1-Apr-2015

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media