Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Least Squares Approximation of Polynomial Chaos Expansions With Optimized Grid Points

Published: 01 January 2017 Publication History

Abstract

In approximating a function by its truncated polynomial chaos expansion (PCE), the target function is projected onto a space spanned by a finite set of orthonormal basis polynomials. Nonintrusive or pseudospectral methods approximate this projection using point evaluations of the target function. One nonintrusive strategy uses the weighted least squares approximation. For this method, like many other nonintrusive methods, the quality of the results depends crucially on the points and weights. The aim of this paper is to find points and weights that lead to excellent accuracy and stability of the weighted least squares approximation. We start by studying the connection between some of the most efficient cubature rules and weighted least squares approximations, and we use this connection to formulate an optimization problem for finding the desired points and weights. We also give a practical algorithm for solving this optimization problem. We then use these points and weights in our numerical experiments to approximate the PCE coefficients for various target functions and polynomial approximation spaces. The results suggest that by using these points and weights, an optimal convergence rate can be achieved even when the number of points scales linearly with (and is only slightly lager than) the dimension of the polynomial space.

References

[1]
M. Avriel, Nonlinear programming: Analysis and methods, Courier Corporation, 2003.
[2]
I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005--1034, https://doi.org/10.1137/050645142.
[3]
I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800--825, https://doi.org/10.1137/S0036142902418680.
[4]
V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12 (2000), pp. 273--288.
[5]
R. Battiti, First-and second-order methods for learning: Between steepest descent and Newton's method, Neural Comput., 4 (1992), pp. 141--166.
[6]
J. Beck, R. Tempone, F. Nobile, and L. Tamellini, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, Math. Models Methods Appl. Sci., 22 (2012), 1250023.
[7]
M. Berveiller, B. Sudret, and M. Lemaire, Stochastic finite element: A non intrusive approach by regression, Eur. J. Comput. Mech., 15 (2006), pp. 81--92.
[8]
L. Bos, M. Caliari, S. De Marchi, M. Vianello, and Y. Xu, Bivariate Lagrange interpolation at the padua points: The generating curve approach, J. Approx. Theory, 143 (2006), pp. 15--25.
[9]
H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147--269.
[10]
R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7 (1998), pp. 1--49.
[11]
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. Math., (1947), pp. 385--392.
[12]
P. R. Conrad and Y. M. Marzouk, Adaptive Smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35 (2013), pp. A2643--A2670, https://doi.org/10.1137/120890715.
[13]
P. G. Constantine, M. S. Eldred, and E. T. Phipps, Sparse pseudospectral approximation method, Comput. Methods Appl. Mech. Engrg., 229 (2012), pp. 1--12.
[14]
R. Cools, Monomial cubature rules since “Stroud”: A compilation? Part 2, J. Comput. Appl. Math., 112 (1999), pp. 21--27.
[15]
R. Cools and K. Poppe, Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function, BIT, 51 (2011), pp. 275--288.
[16]
R. Cools and P. Rabinowitz, Monomial cubature rules since “Stroud”: a compilation, J. Comput. Appl. Math., 48 (1993), pp. 309--326.
[17]
S. Dolgov, B. N. Khoromskij, A. Litvinenko, and H. G. Matthies, Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format, SIAM/ASA J. Uncertainty Quantification, 3 (2015), pp. 1109--1135, https://doi.org/10.1137/140972536.
[18]
M. Eldred and J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in Proceeding of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.
[19]
M. S. Eldred, C. G. Webster, and P. Constantine, Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos, in Proceedings of the 10th AIAA Non-Deterministic Approaches Conference, (Schaumburg, IL), vol. 117, 2008, AIAA-2008-1892, p. 189.
[20]
W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press on Demand, 2004.
[21]
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Corporation, 2003.
[22]
G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3, JHU Press, 2012.
[23]
S. Hosder, R. W. Walters, and R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006.
[24]
J.-H. Jung and W. Stefan, A simple regularization of the polynomial interpolation for the resolution of the runge phenomenon, J. Sci. Comput., 46 (2011), pp. 225--242.
[25]
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455--500, https://doi.org/10.1137/07070111x.
[26]
G. Migliorati and F. Nobile, Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets, J. Complexity, 31 (2015), pp. 517--542.
[27]
G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Approximation of quantities of interest in stochastic PDEs by the random discrete $l^2$ projection on polynomial spaces, SIAM J. Sci. Comput., 35 (2013), pp. A1440--A1460.
[28]
G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of discrete l$^{2}$ projection on polynomial spaces with random evaluations, Found. Comput. Math., 14 (2014), pp. 419--456.
[29]
H. Rauhut and R. Ward, Sparse Legendre expansions via $\ell$1-minimization, J. Approx. Theory, 164 (2012), pp. 517--533.
[30]
A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice Hall, 1971.
[31]
G. Szego, Orthogonal polynomials, vol. 23, Amer. Math. Soc., 1939.
[32]
G. Tang and G. Iaccarino, Subsampled Gauss quadrature nodes for estimating polynomial chaos expansions, SIAM/ASA J. Uncertainty Quantification, 2 (2014), pp. 423--443, https://doi.org/10.1137/130913511.
[33]
L. N. Trefethen, Is Gauss quadrature better than Clenshaw--Curtis?, SIAM Rev., 50 (2008), pp. 67--87, https://doi.org/10.1137/060659831.
[34]
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
[35]
L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, 1997.
[36]
N. Wiener, The homogeneous chaos, Amer. J. Math., (1938), pp. 897--936.
[37]
M. A. Woodbury, Inverting modified matrices, Memorandum report, 42 (1950), p. 106.
[38]
D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118--1139, https://doi.org/10.1137/040615201.
[39]
D. Xiu and G. E. Karniadakis, The Wiener--Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619--644, https://doi.org/10.1137/S1064827501387826.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 39, Issue 5
Special Section: 2016 Copper Mountain Conference
2017
1763 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.39.5
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. polynomial chaos expansion
  2. least squares approximation
  3. cubature rules
  4. pseudospectral approximation
  5. uncertainty quantification

Author Tags

  1. 41A10
  2. 41A63
  3. 65D15
  4. 65D32

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media