Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MultiLevel Local Time-Stepping Methods of Runge--Kutta-type for Wave Equations

Published: 01 January 2017 Publication History

Abstract

Local mesh refinement significantly influences the performance of explicit time-stepping methods for numerical wave propagation. Local time-stepping (LTS) methods improve the efficiency by using smaller time steps precisely where the smallest mesh elements are located, thus permitting a larger time step in the coarser regions of the mesh without violating the stability condition. However, when the mesh contains nested patches of refinement, any local time step will be unnecessarily small in some regions. To allow for an appropriate time step at each level of mesh refinement, multilevel local time-stepping (MLTS) methods have been proposed. Starting from the Runge--Kutta-based LTS methods derived by Grote, Mehlin, and Mitkova [SIAM J. Sci. Comput., 37 (2015), pp. A747--A775], we propose explicit MLTS methods of arbitrarily high accuracy. Numerical experiments with finite difference and continuous finite element spatial discretizations illustrate the usefulness of the novel MLTS methods and show that they retain the high accuracy and stability of the underlying Runge--Kutta methods.

References

[1]
L.D. Angulo, J. Alvarez, F.L. Teixeira, M.F. Pantoja, and S.G. Garcia, Causal-path local time-stepping in the discontinuous Galerkin method for Maxwell's equation, J. Comput. Phys., 256 (2014), pp. 678--695.
[2]
U.M. Ascher, S.J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797--823.
[3]
G.A. Baker and V.A. Dougalis, The effect of quadrature errors on finite element approximations for second order hyperbolic equations, SIAM J. Numer. Anal., 13 (1976), pp. 577--598.
[4]
C. Canuto, M.Y. Hussaini, A. Quateroni, and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, New York, 2006.
[5]
M.H. Carpenter and C.A. Kennedy, Fourth-Order 2N-Storage Runge-Kutta Schemes, NASA report TM-109112, NASA Langley Research Center, Hampton, VA, 1994.
[6]
J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations, J. Comput. Appl. Math., 245 (2013), pp. 194--212.
[7]
B. Cockburn and C.-W. Shu, Runge--Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), pp. 173--261.
[8]
G. Cohen, P. Joly, J. Roberts, and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal., 38 (2001), pp. 2047--2078.
[9]
F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation. I. Construction, Numer. Math., 95 (2003), pp. 197--221.
[10]
E. Constantinescu and A. Sandu, Multirate time stepping methods for hyperbolic conservation laws, J. Sci. Comput., 33 (2007), pp. 239--278.
[11]
A. Demirel, J. Niegemann, K. Busch, and M. Hochbruck, Efficient multiple time-stepping algorithms of higher order, J. Comput. Phys., 285 (2015), pp. 133--148.
[12]
S. Descombes, S. Lanteri and L. Moya, Locally implicit time integration strategies in a discontinuous Galerkin method, J. Sci. Comput., 56 (2013), pp. 190--218.
[13]
J. Diaz and M.J. Grote, Energy conserving explicit local time stepping for second-order wave equations, SIAM J. Sci. Comput., 31 (2009), pp. 1985--2014.
[14]
J. Diaz and M.J. Grote, Multi-level explicit local time-stepping methods for second-order wave equations, Comput. Methods Appl. Mech. Engrg., 291 (2015), pp. 240--265.
[15]
C.W. Gear and D.R. Wells, Multirate linear multistep methods, BIT, 24 (1984), pp. 484--502.
[16]
N. Gödel, S. Schomann, T. Warburton, and M. Clemens, GPU accelerated Adams--Bashforth multirate discontinuous Galerkin FEM simulation of high-frequency electromagnetic fields, IEEE Trans. Magn., 46 (2010), pp. 2735--2738.
[17]
M.J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped wave equations, J. Comput. Appl. Math., 239 (2013), pp. 270--289.
[18]
M.J. Grote, M. Mehlin, and T. Mitkova, Runge--Kutta-based explicit local time-stepping methods for wave propagation, SIAM J. Sci. Comput., 37 (2015), pp. A747--A775.
[19]
M.J. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), pp. 2408--2431.
[20]
M. Günther, A. Kv\aernø, and P. Rentrop, Multirate partitioned Runge-Kutta methods, BIT, 41 (2001), pp. 504--514.
[21]
E. Hairer, S. Nø rsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, New York, 2000.
[22]
M. Hochbruck and A. Sturm, Error analysis of a second-order locally implicit method for linear Maxwell's equations, SIAM J. Numer. Anal., 54 (2016), pp. 3167--3191.
[23]
F.Q. Hu, M.Y. Hussaini, and J.L. Manthey, Low-dissipation and low-dispersion Runge--Kutta schemes for computational acoustics, J. Comput. Phys., 124 (1996), pp. 177--191.
[24]
W. Hundsdorfer, A. Mozartova, and V. Savcenco, Monotonicity conditions for multirate and partitioned explicit Runge--Kutta schemes, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Notes Numer. Fluid Mech. Multidiscip. Des. 120, 2013, pp. 177--195.
[25]
W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math. 33, Springer, Berlin, 2003.
[26]
A. Kanevsky, M.H. Carpenter, D. Gottlieb, and J.S. Hesthaven, Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes, J. Comput. Phys., 225 (2007), pp. 1753--1781.
[27]
G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element for CFD, 2nd ed., Oxford Univ. Press, Oxford, 2005.
[28]
A. Klöckner, High-Performance High-Order Simulation of Wave and Plasma Phenomena, Ph.D. thesis, Brown University, providence, RI, 2010.
[29]
J.E. Kozdon and L.C. Wilcox, Stable coupling of nonconforming, high-order finite difference methods, SIAM J. Sci. Comput., 38 (2016), pp. A923--A952.
[30]
L. Liu, X. Li, and F. Hu, Nonuniform time-step Runge--Kutta dicontinuous Galerkin method for computational aeroacoustics, J. Comput. Phys., 229 (2010), pp. 6874--6897.
[31]
L. Liu, X. Li, and F. Hu, Nonuniform time-step explicit Runge-Kutta scheme for high-order finite difference method, Comput. & Fluids, 105 (2014), pp. 166--178.
[32]
K. Mattsson and M.H. Carpenter, Stable and accurate interpolation operators for high-order multiblock finite difference methods, SIAM J. Sci. Comput., 32 (2010), pp. 2298--2320.
[33]
K. Mattsson, F. Ham, and G. Iaccarino, Stable and accurate wave-propagation in discontinuous media, J. Comput. Phys., 227 (2008), pp. 8753--8767.
[34]
K. Mattsson, F. Ham, and G. Iaccarino, Stable boundary treatment for the wave equation on second-order form, J. Sci. Comput., 41 (2009), pp. 366--383.
[35]
K. Mattsson, Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients, J. Sci. Comput., 51 (2012), pp. 650--682.
[36]
W.A. Mulder, Higher-order mass-lumped finite elements for the wave equation, J. Comput. Acoust., 9 (2001), pp. 671--680.
[37]
F.L. Müller and C. Schwab, Finite elements with mesh refinement for wave equations in polygons, J. Comput. Appl. Math., 283 (2015), pp. 163--181.
[38]
S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, E SIAM Math. Model. Numer. Anal., 40 (2006), pp. 815--841.
[39]
J.R. Rice, Split Runge-Kutta method for simultaneous equations, J. Res. Natl. Bur. Stand. B, 64B (1960), pp. 151--170.
[40]
M. Rietmann, D. Peter, O. Schenk, and M.J. Grote, Newmark local time stepping on high-performance computing architectures, J. Comput. Phys., 334 (2017), pp. 308--326.
[41]
A. Sandu and E. Constantinescu, Multirate explicit Adams methods for time integration of conservation laws, J. Sci. Comput., 38 (2009), pp. 229--249.
[42]
M. Svärd and J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268 (2014), pp. 17--38.
[43]
A. Taube, M. Dumbser, C.-D. Munz, and R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, Int. J. Numer. Model., 22 (2009), pp. 77--103.
[44]
J.G. Verwer, Component splitting for semi-discrete Maxwell equations, BIT, 51 (2010), pp. 427--445.
[45]
K. Virta and K. Mattsson, Acoustic wave propagation in complicated geometries and heterogeneous media, J. Sci. Comput., 61 (2014), pp. 90--118.
[46]
S. Wang, K. Virta, and G. Kreiss, High order finite difference methods for the wave equation with non-conforming grid interfaces, J. Sci. Comput., (2016), pp. 1--27.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 39, Issue 5
Special Section: 2016 Copper Mountain Conference
2017
1763 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.39.5
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2017

Author Tags

  1. finite element methods
  2. SBP-SAT finite differences
  3. explicit time integration
  4. local time stepping
  5. multilevel
  6. multirate methods
  7. hyperbolic problems

Author Tags

  1. 65M60
  2. 65L06

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media