Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

Published: 01 January 2019 Publication History

Abstract

Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers.

References

[1]
Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, Engineering a direct k-way hypergraph partitioning algorithm, in Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM, Philadelphia, 2017, pp. 28--42.
[2]
C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: A survey, Integration, 19 (1995), pp. 1--81.
[3]
S. T. Barnard and H. D. Simon, Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems, Concurrency Comput. Pract. Exper., 6 (1994), pp. 101--117.
[4]
V. Batagelj and U. Brandes, Efficient generation of large random networks, Phys. Rev. E, 71 (2005), 036113.
[5]
C.-E. Bichot and P. Siarry, Graph Partitioning, John Wiley & Sons, New York, 2013.
[6]
M. Bolla, Spectra, Euclidean representations and clusterings of hypergraphs, Discrete Math., 117 (1993), pp. 19--39.
[7]
A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in Multilevel Optimization and VLSICAD, J. Cong and J. R. Shinnerl, eds., Kluwer, Academic Publishers, Norwell, MA, 2003.
[8]
W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, 2000.
[9]
A. Buluc and E. G. Boman, Towards scalable parallel hypergraph partitioning, in CSRI Summer Proceedings 2008, Sandia National Labs, 2008, pp. 109--119.
[10]
A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent advances in graph partitioning, in Algorithm Engineering, Springer, New York, 2016, pp. 117--158.
[11]
Ü. Çatalyürek and C. Aykanat, PATOH (Partitioning Tool for Hypergraphs), in Encyclopedia of Parallel Computing, Springer, New York, 2011, pp. 1479--1487.
[12]
U. V. Catalyurek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst., 10 (1999), pp. 673--693.
[13]
U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Heaphy, and L. A. Riesen, A repartitioning hypergraph model for dynamic load balancing, J. Parallel Distrib. Comput., 69 (2009), pp. 711--724.
[14]
T. Chan, A. Louis, Z. G. Tang, and C. Zhang, Spectral Properties of Hypergraph Laplacian and Approximation Algorithms, preprint, arXiv:1605.01483, 2016.
[15]
J. Chen and I. Safro, Algebraic distance on graphs, SIAM J. Sci. Comput., 33 (2011), pp. 3468--3490.
[16]
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011).
[17]
D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, Graph partitioning with natural cuts, in Proceedings of the IEEE International Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2011, pp. 1135--1146.
[18]
K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek, Parallel hypergraph partitioning for scientific computing, in Proceedings of the 20th International Parallel and Distributed Processing Symposium, IEEE, 2006.
[19]
K. D. Devine, V. Leung, E. G. Boman, S. Rajamanickam, L. A. Riesen, and U. Catalyurek, Zoltan User's Guide, 2014, http://www.cs.sandia.gov/zoltan/ug_html/ug_alg_patoh.html.
[20]
I. S. Dhillon, Y. Guan, and B. Kulis, Weighted graph cuts without eigenvectors: A multilevel approach, IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007), pp. 1944--1957.
[21]
C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network partitions, in Papers on Twenty-Five Years of Electronic Design Automation, ACM, New York, 1988, pp. 241--247.
[22]
M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298--305.
[23]
M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide to the Theory of $NP$-Completeness, W. H. Freeman, San Francisco, 1979.
[24]
L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 11 (1992), pp. 1074--1085.
[25]
W. W. Hager, J. T. Hungerford, and I. Safro, A multilevel bilinear programming algorithm for the vertex separator problem, Comput. Optim. Appl., 69 (2018), pp. 189--223, https://doi.org/10.1007/s10589-017-9945-2.
[26]
B. Hendrickson and R. W. Leland, A multi-level algorithm for partitioning graphs, in Proceedings of the ACM/IEEE Conference on Supercomputing, 1995.
[27]
M. A. Heroux, R. A. Bartlett, V. E. Howle, et al., An overview of the Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397--423.
[28]
S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24 (2012), pp. 564--579.
[29]
Y. F. Hu and J. A. Scott, A multilevel algorithm for wavefront reduction, SIAM J. Sci. Comput., 23 (2001), pp. 1352--1375, https://doi.org/10.1137/S1064827500377733.
[30]
E. Ihler, D. Wagner, and F. Wagner, Modeling hypergraphs by graphs with the same mincut properties, Inform. Process. Lett., 45 (1993), pp. 171--175.
[31]
E. John and I. Safro, Single-and multi-level network sparsification by algebraic distance, J. Complex Netw., 5 (2016), pp. 352--388.
[32]
G. Karypis, R. Aggarwal, V. Kumar, S. Member, S. Shekhar, and S. Member, Multilevel hypergraph partitioning: Application in VLSI domain, in Proceedings of the ACM/IEEE Design Automation Conference, 1997, pp. 526--529.
[33]
G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partitioning: Applications in VLSI domain, IEEE Trans. Very Large Scale Integr. Syst., 7 (1999), pp. 69--79.
[34]
G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359--392.
[35]
B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Syst. Tech. J., 49 (1970), pp. 291--307.
[36]
S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), pp. 1393--1403.
[37]
J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.stanford.edu/data, 2014.
[38]
S. Leyffer and I. Safro, Fast response to infection spread and cyber attacks on large-scale networks, J. Complex Netw., 1 (2013), pp. 183--199.
[39]
F. Lotfifar and M. Johnson, A multi--level hypergraph partitioning algorithm using rough set clustering, in Proceedings of the European Conference on Parallel Processing, Springer, New York, 2015, pp. 159--170.
[40]
A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, Measurement and analysis of online social networks, in Proceedings of the Fifth ACM/Usenix Internet Measurement Conference (IMC'07), San Diego, 2007.
[41]
U. Naumann and O. Schenk, Combinatorial Scientific Computing, 1st ed., Chapman & Hall/CRC, Boca Raton, FL, 2012.
[42]
A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, in Proceedings of NIPS, 2001, pp. 849--856.
[43]
D. A. Papa and I. L. Markov, Hypergraph Partitioning and Clustering, University of Michigan, Ann Arbor, MI, 2007.
[44]
D. Ron, I. Safro, and A. Brandt, Relaxation-based coarsening and multiscale graph organization, Multiscale Model. Simul., 9 (2011), pp. 407--423.
[45]
I. Safro, D. Ron, and A. Brandt, Graph minimum linear arrangement by multilevel weighted edge contractions, J. Algorithms, 60 (2006), pp. 24--41.
[46]
I. Safro, P. Sanders, and C. Schulz, Advanced coarsening schemes for graph partitioning, ACM J. Exp. Algorithmics, 19 (2015), pp. 1--24.
[47]
I. Safro and B. Temkin, Multiscale approach for the network compression-friendly ordering, J. Discrete Algorithms, 9 (2011), pp. 190--202.
[48]
P. Sanders and C. Schulz, Engineering multilevel graph partitioning algorithms, in Proceedings of ESA, C. Demetrescu and M. M. Halldórsson, eds., Lecture Notes in Comput. Sci. 6942, Springer, New York, 2011, pp. 469--480.
[49]
S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz, k-way hypergraph partitioning via n-level recursive bisection, in Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM, Philadelphia, 2016, pp. 53--67.
[50]
C. Staudt, A. Sazonovs, and H. Meyerhenke, Networkit: An Interactive Tool Suite for High-Performance Network Analysis, CoRR, abs/1403.3005, 2014.
[51]
A. Strehl and J. Ghosh, Cluster ensembles---A knowledge reuse framework for combining multiple partitions, J. Mach. Learn. Res., 3 (2002), pp. 583--617.
[52]
L. Sun, S. Ji, and J. Ye, Hypergraph spectral learning for multi-label classification, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, 2008, pp. 668--676.
[53]
A. Trifunovic, Parallel Algorithms for Hypergraph Partitioning, University of London, London, 2006.
[54]
B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67--95.
[55]
D. Zhou, J. Huang, and B. Schölkopf, Learning with hypergraphs: Clustering, classification, and embedding, in Proceedings of NIPS, vol. 19, 2006, pp. 1633--1640.

Cited By

View all
  • (2024)K-SpecPart: Supervised Embedding Algorithms and Cut Overlay for Improved Hypergraph PartitioningIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2023.333226843:4(1232-1245)Online publication date: 1-Apr-2024
  • (2023)More Recent Advances in (Hyper)Graph PartitioningACM Computing Surveys10.1145/357180855:12(1-38)Online publication date: 2-Mar-2023
  • (2023)High-Quality Hypergraph PartitioningACM Journal of Experimental Algorithmics10.1145/352909027(1-39)Online publication date: 10-Feb-2023
  • Show More Cited By

Index Terms

  1. Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Multiscale Modeling and Simulation
        Multiscale Modeling and Simulation  Volume 17, Issue 1
        EISSN:1540-3467
        DOI:10.1137/mmsubt.17.1
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2019

        Author Tags

        1. hypergraph partitioning
        2. multilevel algorithms
        3. coarsening
        4. matching
        5. vertex similarity measure
        6. combinatorial scientific computing

        Author Tags

        1. 05C50
        2. 05C65
        3. 05C85
        4. 68R10
        5. 90C06
        6. 90C35
        7. 65M55
        8. 68W01

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 30 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)K-SpecPart: Supervised Embedding Algorithms and Cut Overlay for Improved Hypergraph PartitioningIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2023.333226843:4(1232-1245)Online publication date: 1-Apr-2024
        • (2023)More Recent Advances in (Hyper)Graph PartitioningACM Computing Surveys10.1145/357180855:12(1-38)Online publication date: 2-Mar-2023
        • (2023)High-Quality Hypergraph PartitioningACM Journal of Experimental Algorithmics10.1145/352909027(1-39)Online publication date: 10-Feb-2023
        • (2022)HyperEFProceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design10.1145/3508352.3549438(1-9)Online publication date: 30-Oct-2022
        • (2022)SpecPartProceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design10.1145/3508352.3549390(1-9)Online publication date: 30-Oct-2022
        • (2022)Leveraging special-purpose hardware for local search heuristicsComputational Optimization and Applications10.1007/s10589-022-00354-282:1(1-29)Online publication date: 1-May-2022
        • (2022)Partitioning Dense Graphs with Hardware AcceleratorsComputational Science – ICCS 202210.1007/978-3-031-08757-8_40(476-483)Online publication date: 21-Jun-2022
        • (2021)Multilevel Combinatorial Optimization across Quantum ArchitecturesACM Transactions on Quantum Computing10.1145/34256072:1(1-29)Online publication date: 13-Feb-2021
        • (2021)HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)10.1109/ICCAD51958.2021.9643555(1-9)Online publication date: 1-Nov-2021

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media