Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3508352.3549390acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
research-article
Open access

SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

Published: 22 December 2022 Publication History

Abstract

State-of-the-art hypergraph partitioners follow the multilevel paradigm that constructs multiple levels of progressively coarser hypergraphs that are used to drive cut refinements on each level of the hierarchy. Multilevel partitioners are subject to two limitations: (i) Hypergraph coarsening processes rely on local neighborhood structure without fully considering the global structure of the hypergraph. (ii) Refinement heuristics can stagnate on local minima. In this paper, we describe SpecPart, the first supervised spectral framework that directly tackles these two limitations. SpecPart solves a generalized eigenvalue problem that captures the balanced partitioning objective and global hypergraph structure in a low-dimensional vertex embedding while leveraging initial high-quality solutions from multilevel partitioners as hints. SpecPart further constructs a family of trees from the vertex embedding and partitions them with a tree-sweeping algorithm. Then, a novel overlay of multiple tree-based partitioning solutions, followed by lifting to a coarsened hypergraph, where an ILP partitioning instance is solved to alleviate local stagnation. We have validated SpecPart on multiple sets of benchmarks. Experimental results show that for some benchmarks, our SpecPart can substantially improve the cutsize by more than 50% with respect to the best published solutions obtained with leading partitioners hMETIS and KaHyPar.

References

[1]
M. Cucuringu, I. Koutis, S. Chawla, G. Miller and R. Peng, "Simple and scalable constrained clustering: a generalized spectral method", Proc. International Conference on Artificial Intelligence and Statistics, 2016, pp. 445--454.
[2]
N. Alon, R. M. Karp, D. Peleg and D. West, "A graph-theoretic game and its application to the k-server problem", SIAM Journal on Computing (24)(1) (1995), pp. 78--100.
[3]
J. B. Kruskal. "On the shortest spanning subtree of a graph and the traveling salesman problem", Proc. American Mathematical Society (7)(1) (1956), pp. 48--50.
[4]
C. J. Alpert, "The ISPD98 circuit benchmark suite", Proc. ACM/IEEE International Symposium on Physical Design (ISPD), 1998, pp. 80--85.
[5]
G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs", SIAM Journal on Scientific Computing (20)(1) (1998), pp. 359--392.
[6]
G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, "Multilevel hypergraph partitioning: applications in VLSI domain", IEEE Transactions on Very Large Scale Integration (VLSI) Systems (7))(1) (1999), pp. 69--79.
[7]
G. Karypis and V. Kumar, "hMETIS, a hypergraph partitioning package, version 1.5.3", 1998. http://glaros.dtc.umn.edu/gkhome/fetch/sw/hMETIS/manual.pdf
[8]
K. E. Murray, S. Whitty, S. Liu, J. Luu and V. Betz, "Titan: Enabling large and complex benchmarks in academic CAD", Proc. International Conference on Field programmable Logic and Applications, 2013, pp. 1--8.
[9]
Ü. Çatalyürek and C. Aykanat, "PaToH (partitioning tool for hypergraphs)", Boston, MA, Springer US, 2011.
[10]
J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, "Julia: a fresh approach to numerical computing", SIAM Review (59)(1) (2017), pp. 65--98.
[11]
C. M. Fiduccia and R. M. Mattheyses, "A linear-time heuristic for improving network partitions", Proc. IEEE/ACM Design Automation Conference (DAC), 1982, pp. 175--181.
[12]
R. Shaydulin, J. Chen and I. Safro, "Relaxation-based coarsening for multilevel hypergraph partitioning", Multiscale Modeling & Simulation (17)(1) (2019), pp. 482--506.
[13]
A. V. Knyazev, "Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method", SIAM Journal on Scientific Computing (23)(2) (2001), pp. 517--541.
[14]
T. Heuer, P. Sanders and S. Schlag, "Network flow-based refinement for multilevel hypergraph partitioning", ACM Journal of Experimental Algorithmics (24)(2) (2019), pp. 1--36.
[15]
D. Kucar, S. Areibi and A. Vannelli, "Hypergraph partitioning techniques", Dynamics of Continuous, Discrete & Impulsive Systems. Series A: Mathematical Analysis (11)(2) (2004), pp. 339--367.
[16]
R. Merris, "Laplacian matrices of graphs: a survey", Linear Algebra and its Applications (197) (1994), pp. 143--176.
[17]
A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov, "Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc", SIAM Journal on Scientific Computing (25)(5) (2007), pp. 2224--2239.
[18]
I. Koutis, G. L. Miller and R. Peng, "Approaching optimality for solving SDD linear system", SIAM Journal on Computing (43)(1) (2014), pp. 337--354.
[19]
J. G. Sun and G. W. Stewart, Matrix Perturbation Theory, Cambridge, MA, ACADEMIC PressINC, 1990.
[20]
I. Koutis, G. L. Miller and D. Tolliver, "Combinatorial preconditioners and multi-level solvers for problems in computer vision and image processing", Computer Vision andImage Understanding (115)(12) (2011), pp. 1638--1646.
[21]
A. E. Caldwell, A. B. Kahng and I. L. Markov, "Improved algorithms for hypergraph bipartitioning", Proc. IEEE/ACM Design Automation Conference (DAC), 2000, pp. 661--666.
[22]
J. R. Lee, S. O. Gharan and L. Trevisan, "Multiway spectral partitioning and higher-order cheeger inequalities", Journal of the ACM (JACM) (61) (2014), pp. 1--30.
[23]
T. Heuer, "Engineering initial partitioning algorithms for direct k-way hypergraph partitioning", Karlsruher Institut für Technologie, 2015.
[24]
S. Sebastian, H. Tobias, G. Lars, A. Yaroslav, S. Christian and S. Peter, "High-quality hypergraph partitioning", ACM Journal of Experimental Algorithmics (2022).
[25]
S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders and C. Schulz, "k-way Hypergraph Partitioning via n-Level Recursive Bisection", Proc. The Meeting On Algorithm Engineering And Experiments (ALENEX), 2016, pp. 53--67.
[26]
J. Y. Zien, M. D. F. Schlag and P. K. Chan, "Multilevel spectral hypergraph partitioning with arbitrary vertex sizes", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (18)(9) (1999), pp. 1389--1399.
[27]
L. Hagen and A. B. Kahng, "Fast spectral methods for ratio cut partitioning and clustering", Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 1991, pp. 10--13.
[28]
N. Rebagliati and A. Verri. "Spectral clustering with more than K eigenvectors", Neurocomputing (74)(9) (2011), pp. 1391--1401.
[29]
C. J. Alpert and A. B. Kahng, "Multiway partitioning via geometric embeddings, orderings, and dynamic programming", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (14)(11) (1995), pp. 1342--1358.
[30]
R. Horaud, "A short tutorial on graph Laplacians, Laplacian embedding, and spectral clustering", 2009. https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf.
[31]
F. R. K. Chung, "Spectral graph theory", CBMS Regional Conference Series in Mathematics, 1997.
[32]
M. Kapralov and R. Panigrahy, "Spectral sparsification via random spanners", Proc. Innovations in Theoretical Computer Science Conference, 2012, pp. 393--398.
[33]
S. Hoory and N. Linial. "Expander graphs and their applications", Bulletin of the American Mathematical Society (43) (2006), pp. 439--561.
[34]
C. Ravishankar, D. Gaitonde and T. Bauer, "Placement strategies for 2.5D FPGA fabric architectures", Proc. International Conference on Field Programmable Logic and Applications (FPL), 2018, pp. 16--164.
[35]
R. L. Graham and P. Hell, "On the history of the minimum spanning tree problem", Annals of the History of Computing (7)(1) (1985), pp. 43--57.
[36]
IBM ILOG CPLEX optimizer, https://www.ibm.com/analytics/cplex-optimizer.
[37]
V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, "Fast unfolding of communities in large networks", Journal of Statistical Mechanics: Theory and Experiment (2008)(10) (2008), pp. 10008.
[38]
E. G. Boman and B. Hendrickson, "Support theory for preconditioning", SIAM Journal on Matrix Analysis and Applications (25)(3) (2003), pp. 694--717.
[39]
C. J Alpert, A. B. Kahng and S.-Z. Yao, "Spectral partitioning with multiple eigenvectors", Discrete Applied Mathematics (90)(1) (1999), pp. 3--26.
[40]
https://github.com/kahypar/kahypar/blob/master/config/cut_rKaHyPar_sea20.ini
[41]
Partition solutions, scripts and SpecPart, https://github.com/TILOS-AI-Institute/HypergraphPartitioning.
[42]
Ray, https://docs.ray.io/en/latest/index.html.
[43]
Latest actual area results for hMETIS, https://vlsicad.ucsd.edu/UCLAWeb/cheese/errata.html.
[44]
Comparison of UCLA MLPart (v4.17) and hMETIS (v1.5.3) on instances with actual cell areas (2% configuration), https://vlsicad.ucsd.edu/UCLAWeb/benchmarks/hMETISML02Tab.html.
[45]
Comparison of UCLA MLPart (v4.17) and hMETIS (v1.5.3) on instances with actual cell areas (10% configuration), https://vlsicad.ucsd.edu/UCLAWeb/benchmarks/hMETISML10Tab.html.

Cited By

View all
  • (2024)PPA-Relevant Clustering-Driven Placement for Large-Scale VLSI DesignsProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3655991(1-6)Online publication date: 23-Jun-2024
  • (2024)MedPart: A Multi-Level Evolutionary Differentiable Hypergraph PartitionerProceedings of the 2024 International Symposium on Physical Design10.1145/3626184.3633319(3-11)Online publication date: 12-Mar-2024
  • (2024)Enhancing K-Way Circuit Partitioning: A Deep Reinforcement Learning MethodologyOptimization, Learning Algorithms and Applications10.1007/978-3-031-77426-3_10(139-154)Online publication date: 26-Dec-2024
  • Show More Cited By

Index Terms

  1. SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ICCAD '22: Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design
      October 2022
      1467 pages
      ISBN:9781450392174
      DOI:10.1145/3508352
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      In-Cooperation

      • IEEE-EDS: Electronic Devices Society
      • IEEE CAS
      • IEEE CEDA

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 December 2022

      Check for updates

      Author Tags

      1. hypergraph partitioning
      2. supervised spectral partitioning

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      ICCAD '22
      Sponsor:
      ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design
      October 30 - November 3, 2022
      California, San Diego

      Acceptance Rates

      Overall Acceptance Rate 457 of 1,762 submissions, 26%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)414
      • Downloads (Last 6 weeks)41
      Reflects downloads up to 29 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)PPA-Relevant Clustering-Driven Placement for Large-Scale VLSI DesignsProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3655991(1-6)Online publication date: 23-Jun-2024
      • (2024)MedPart: A Multi-Level Evolutionary Differentiable Hypergraph PartitionerProceedings of the 2024 International Symposium on Physical Design10.1145/3626184.3633319(3-11)Online publication date: 12-Mar-2024
      • (2024)Enhancing K-Way Circuit Partitioning: A Deep Reinforcement Learning MethodologyOptimization, Learning Algorithms and Applications10.1007/978-3-031-77426-3_10(139-154)Online publication date: 26-Dec-2024
      • (2024)The TILOS AI InstituteAI Magazine10.1002/aaai.1216545:1(54-60)Online publication date: 19-Mar-2024
      • (2023)An Open-Source Constraints-Driven General Partitioning Multi-Tool for VLSI Physical Design2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)10.1109/ICCAD57390.2023.10323975(1-9)Online publication date: 28-Oct-2023
      • (2023)Invited Paper: IEEE CEDA DATC Emerging Foundations in IC Physical Design and MLCAD Research2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)10.1109/ICCAD57390.2023.10323736(1-7)Online publication date: 28-Oct-2023

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media