Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Time Hierarchy Theorem for the LOCAL Model

Published: 01 January 2019 Publication History
  • Get Citation Alerts
  • Abstract

    The celebrated time hierarchy theorem for Turing machines states, informally, that more problems can be solved given more time. The extent to which a time hierarchy--type theorem holds in the classic distributed $\mathsf{LOCAL}$ model has been open for many years. In particular, it is consistent with previous results that all natural problems in the $\mathsf{LOCAL}$ model can be classified according to a small constant number of complexities, such as $O(1),O(\log^* n), O(\log n), 2^{O(\sqrt{\log n})}$, etc. In this paper we establish the first time hierarchy theorem for the $\mathsf{LOCAL}$ model and prove that several gaps exist in the $\mathsf{LOCAL}$ time hierarchy. Our main results are as follows: (a) We define an infinite set of simple coloring problems called hierarchical $2\frac{1}{2}$-coloring. A correctly colored graph can be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class of locally checkable labeling (LCL) problems. However, the complexity of the $k$-level hierarchical $2\frac{1}{2}$-coloring problem is $\Theta(n^{1/k})$ for $k\in\mathbb{Z}^+$. The upper and lower bounds hold for both general graphs and trees and for both randomized and deterministic algorithms. (b) Consider any LCL problem on bounded degree trees. We prove an automatic speedup theorem that states that any randomized $n^{o(1)}$-time algorithm solving the LCL can be transformed into a deterministic $O(\log n)$-time algorithm. Together with a previous result [Y.-J. Chang, T. Kopelowitz, and S. Pettie, Proceedings of FOCS, 2016, pp. 615--624], this establishes that on trees, there are no natural deterministic complexities in the ranges $\omega(\log^* n)$---$o(\log n)$ or $\omega(\log n)$---$n^{o(1)}$. (c) We expose a new gap in the randomized time hierarchy on general graphs. Roughly speaking, any randomized algorithm that solves an LCL problem in sublogarithmic time can be sped up to run in $O(T_{LLL})$ time: the complexity of the distributed Lovász local lemma (LLL) problem. In other words, the LLL is complete for sublogarithmic time. Finally, we revisit Naor and Stockmeyer's characterization of $O(1)$-time $\mathsf{LOCAL}$ algorithms for LCL problems (as order-invariant w.r.t. vertex IDs) and calculate the complexity gaps that are directly implied by their proof. For $n$-rings we see an $\omega(1)$---$o(\log^* n)$ complexity gap, for $(\sqrt{n}\times \sqrt{n})$-tori an $\omega(1)$---$o(\sqrt{\log^* n})$ gap, and for bounded degree trees and general graphs, an $\omega(1)$---$o(\log(\log^* n))$ complexity gap.

    References

    [1]
    D. Achlioptas and F. Iliopoulos, Random walks that find perfect objects and the Lovász local lemma, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 494--503, https://doi.org/10.1109/FOCS.2014.59.
    [2]
    A. Balliu, S. Brandt, D. Olivetti, and J. Suomela, Almost global problems in the LOCAL model, in Proceedings of the 32nd International Symposium on Distributed Computing, 2018.
    [3]
    A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D. Olivetti, and J. Suomela, New classes of distributed time complexity, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), New York, 2018, pp. 1307--1318, https://doi.org/10.1145/3188745.3188860.
    [4]
    R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman, A distributed $(2+\epsilon)$-approximation for vertex cover in ${O}(\log{\Delta}/\epsilon \log\log{\Delta})$ rounds, J. ACM, 64 (2017), 23.
    [5]
    L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry breaking, J. ACM, 63 (2016), 20.
    [6]
    S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto, A lower bound for the distributed Lovász local lemma, in Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC), 2016, pp. 479--488.
    [7]
    S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, P. R. J. Österg\aard, C. Purcell, J. Rybicki, J. Suomela, and P. Uznanski, LCL problems on grids, in Proceedings of the 36th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2017, pp. 101--110.
    [8]
    Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, The complexity of distributed edge coloring with small palettes, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, pp. 2633--2652.
    [9]
    Y.-J. Chang, T. Kopelowitz, and S. Pettie, An exponential separation between randomized and deterministic complexity in the LOCAL model, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 615--624, https://doi.org/10.1109/FOCS.2016.72.
    [10]
    Y.-J. Chang and S. Pettie, A time hierarchy theorem for the LOCAL model, in Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS), 2017, pp. 156--167.
    [11]
    K.-M. Chung, S. Pettie, and H.-H. Su, Distributed algorithms for the Lovász local lemma and graph coloring, Distrib. Comput., 30 (2017), pp. 261--280.
    [12]
    R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list ranking, Inform. Control, 70 (1986), pp. 32--53.
    [13]
    L. Feuilloley and P. Fraigniaud, Survey of distributed decision, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 119 (2016), pp. 41--65.
    [14]
    M. Fischer, Improved deterministic distributed matching via rounding, in Proceedings of the 31st International Symposium on Distributed Computing (DISC), 2017, pp. 17:1--17:15.
    [15]
    M. Fischer and M. Ghaffari, Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy, in Proceedings of the 31st International Symposium on Distributed Computing (DISC), 2017, 18.
    [16]
    P. Fraigniaud, A. Korman, and D. Peleg, Towards a complexity theory for local distributed computing, J. ACM, 60 (2013), 35, https://doi.org/10.1145/2499228.
    [17]
    M. Fürer, Data structures for distributed counting, J. Comput. System Sci., 28 (1984), pp. 231--243, https://doi.org/10.1016/0022-0000(84)90067-9.
    [18]
    M. Ghaffari, An improved distributed algorithm for maximal independent set, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016, pp. 270--277, https://doi.org/10.1137/1.9781611974331.ch20.
    [19]
    M. Ghaffari, D. G. Harris, and F. Kuhn, On Derandomizing Local Distributed Algorithms, in Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), 2018.
    [20]
    M. Ghaffari, F. Kuhn, and Y. Maus, On the complexity of local distributed graph problems, in Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), 2017, pp. 784--797.
    [21]
    M. Ghaffari and H.-H. Su, Distributed degree splitting, edge coloring, and orientations, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2505--2523, https://doi.org/10.1137/1.9781611974782.166.
    [22]
    M. Göös, J. Hirvonen, and J. Suomela, Linear-in-${\Delta}$ lower bounds in the LOCAL model, Distrib. Comput., 30 (2015), pp. 325--338, https://doi.org/10.1007/s00446-015-0245-8.
    [23]
    M. Göös and J. Suomela, Locally checkable proofs in distributed computing, Theory Comput., 12 (2016), pp. 1--33, https://doi.org/10.4086/toc.2016.v012a019.
    [24]
    M. Göös and J. Suomela, No sublogarithmic-time approximation scheme for bipartite vertex cover, Distrib. Comput., 27 (2014), pp. 435--443, https://doi.org/10.1007/s00446-013-0194-z.
    [25]
    R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, 2nd ed., John Wiley and Sons, New York, 1990.
    [26]
    B. Haeupler and D. G. Harris, Parallel algorithms and concentration bounds for the Lovász local lemma via witness-DAGs, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 1170--1187, https://doi.org/10.1137/1.9781611974782.76.
    [27]
    M. Hańćkowiak, M. Karoński, and A. Panconesi, On the distributed complexity of computing maximal matchings, SIAM J. Discrete Math., 15 (2001), pp. 41--57.
    [28]
    D. G. Harris, Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lovász local lemma, ACM Trans. Algorithms, 13 (2016), 17, https://doi.org/10.1145/3015762.
    [29]
    D. G. Harris and A. Srinivasan, A constructive algorithm for the Lovász local lemma on permutations, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 907--925, https://doi.org/10.1137/1.9781611973402.68.
    [30]
    J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc., 117 (1965), pp. 285--306.
    [31]
    N. J. A. Harvey and J. Vondrák, An algorithmic proof of the Lovász local lemma via resampling oracles, in Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2015, pp. 1327--1346, https://doi.org/10.1109/FOCS.2015.85.
    [32]
    D. Hefetz, F. Kuhn, Y. Maus, and A. Steger, Polynomial lower bound for distributed graph coloring in a weak LOCAL model, in Proceedings of the 30th International Symposium on Distributed Computing (DISC), 2016, pp. 99--113, https://doi.org/10.1007/978-3-662-53426-7_8.
    [33]
    K. B. R. Kolipaka and M. Szegedy, Moser and Tardos meet Lovász, in Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), 2011, pp. 235--244, https://doi.org/10.1145/1993636.1993669.
    [34]
    V. Kolmogorov, Commutativity in the algorithmic Lovász local lemma, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 780--787, https://doi.org/10.1109/FOCS.2016.88.
    [35]
    A. Korman, J.-S. Sereni, and L. Viennot, Toward more localized local algorithms: removing assumptions concerning global knowledge., Distrib. Comput., 26 (2013), pp. 289--308.
    [36]
    F. Kuhn, T. Moscibroda, and R. Wattenhofer, Local computation: Lower and upper bounds, J. ACM, 63 (2016), 17, https://doi.org/10.1145/2742012.
    [37]
    F. Kuhn and R. Wattenhofer, On the complexity of distributed graph coloring, in Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2006, pp. 7--15.
    [38]
    N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193--201.
    [39]
    G. L. Miller and J. H. Reif, Parallel tree contraction---Part I: Fundamentals, Adv. Comput. Res., 5 (1989), pp. 47--72.
    [40]
    R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM, 57 (2010), 11, https://doi.org/10.1145/1667053.1667060.
    [41]
    M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Discrete Math., 4 (1991), pp. 409--412, https://doi.org/10.1137/0404036.
    [42]
    M. Naor and L. J. Stockmeyer, What can be computed locally?, SIAM J. Comput., 24 (1995), pp. 1259--1277, https://doi.org/10.1137/S0097539793254571.
    [43]
    D. Peleg, Distributed Computing: A Locality-Sensitive Approach, Discrete Math. Appl. 5, SIAM, Philadelphia, 2000.
    [44]
    S. Pettie and H.-H. Su, Distributed algorithms for coloring triangle-free graphs, Inform. and Comput., 243 (2015), pp. 263--280.
    [45]
    J. Suomela, Survey of local algorithms, ACM Comput. Surv., 45 (2013), 24, https://doi.org/10.1145/2431211.2431223.
    [46]
    J. Suomela, private communication, 2017.

    Cited By

    View all
    • (2024)Brief Announcement: Local Advice and Local DecompressionProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662805(117-120)Online publication date: 17-Jun-2024
    • (2024)A Tight Lower Bound for 3-Coloring Grids in the Online-LOCAL ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662794(106-116)Online publication date: 17-Jun-2024
    • (2024)Completing the Node-Averaged Complexity Landscape of LCLs on TreesProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662773(369-379)Online publication date: 17-Jun-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Computing
    SIAM Journal on Computing  Volume 48, Issue 1
    ISSN:0097-5397
    DOI:10.1137/smjcat.48.1
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2019

    Author Tags

    1. distributed local model
    2. local checkable labeling
    3. Lovász local lemma
    4. time hierarchy theorem

    Author Tags

    1. 05C85
    2. 68W15

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Brief Announcement: Local Advice and Local DecompressionProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662805(117-120)Online publication date: 17-Jun-2024
    • (2024)A Tight Lower Bound for 3-Coloring Grids in the Online-LOCAL ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662794(106-116)Online publication date: 17-Jun-2024
    • (2024)Completing the Node-Averaged Complexity Landscape of LCLs on TreesProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662773(369-379)Online publication date: 17-Jun-2024
    • (2024)No Distributed Quantum Advantage for Approximate Graph ColoringProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649679(1901-1910)Online publication date: 10-Jun-2024
    • (2024)Polylog-Competitive Deterministic Local Routing and SchedulingProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649678(812-822)Online publication date: 10-Jun-2024
    • (2024)Distributed Binary Labeling Problems in High-Degree GraphsStructural Information and Communication Complexity10.1007/978-3-031-60603-8_22(402-419)Online publication date: 27-May-2024
    • (2023)Distributed graph problems through an automata-theoretic lensTheoretical Computer Science10.1016/j.tcs.2023.113710951:COnline publication date: 24-Mar-2023
    • (2023)Distributed Coloring of HypergraphsStructural Information and Communication Complexity10.1007/978-3-031-32733-9_5(89-111)Online publication date: 6-Jun-2023
    • (2022)Distributed ∆-coloring plays hide-and-seekProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520027(464-477)Online publication date: 9-Jun-2022
    • (2022)Locally checkable problems in rooted treesDistributed Computing10.1007/s00446-022-00435-936:3(277-311)Online publication date: 22-Aug-2022
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media