Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Characterizing the Integrality Gap of the Subtour LP for the Circulant Traveling Salesman Problem

Published: 01 January 2019 Publication History

Abstract

We consider the integrality gap of the subtour linear program (LP) relaxation of the traveling salesman problem (TSP) restricted to circulant instances. De Klerk and Dobre [Discrete Appl. Math., 159 (2011), pp. 1815--1826] conjectured that the value of the optimal solution to the subtour LP in these instances is equal to an entirely combinatorial lower bound from Van der Veen, Van Dal, and Sierksma [The Symmetric Circulant Traveling Salesman Problem, Research Memorandum 429, Institute of Economic Research, University of Groningen, 1991]. We prove this conjecture by giving an explicit optimal solution to the subtour LP. We then show that the integrality gap of the subtour LP is 2 on circulant instances, making such instances one of the few nontrivial classes of TSP instances for which the integrality gap of the subtour LP is exactly known. We also show that the degree constraints do not strengthen the subtour LP on circulant instances, mimicking the parsimonious property of metric, symmetric TSP instances shown in Goemans and Bertsimas [Math. Programming, 60 (1993), pp. 145--166] in a distinctly nonmetric set of instances.

References

[1]
S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, J. ACM, 45 (1998), pp. 753--782, https://doi.org/10.1145/290179.290180.
[2]
P. Berman and M. Karpinski, 8/7\em-approximation algorithm for (1,2)-TSP, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2006, pp. 641--648, https://doi.org/10.1145/1109557.1109627.
[3]
S. C. Boyd and W. H. Cunningham, Small travelling salesman polytopes, Math. Oper. Res., 16 (1991), pp. 259--271, https://doi.org/10.1287/moor.16.2.259.
[4]
R. Burkard and W. Sandholzer, Efficiently solvable special cases of bottleneck travelling salesman problems, Discrete Appl. Math., 32 (1991), pp. 61--76, https://doi.org/10.1016/0166-218X(91)90024-Q.
[5]
R. E. Burkard, Efficiently solvable special cases of hard combinatorial optimization problems, Math. Programming, 79 (1997), pp. 55--69, https://doi.org/10.1007/BF02614311.
[6]
R. E. Burkard, V. G. Deĭneko, R. van Dal, J. A. A. van der Veen, and G. J. Woeginger, Well-solvable special cases of the traveling salesman problem: A survey, SIAM Rev., 40 (1998), pp. 496--546, https://doi.org/10.1137/S0036144596297514.
[7]
N. Christofides, Worst-case Analysis of a New Heuristic for the Travelling Salesman Problem, Management Sciences Research Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.
[8]
B. Codenotti, I. Gerace, and S. Vigna, Hardness results and spectral techniques for combinatorial problems on circulant graphs, Linear Algebra Appl., 285 (1998), pp. 123--142, https://doi.org/10.1016/S0024-3795(98)10126-X.
[9]
W. H. Cunningham, On Bounds for the Metric TSP, manuscript, School of Mathematics and Statistics, Carleton University, Ottawa, Canada, 1986.
[10]
G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman problem, J. Operations Res. Soc. Amer., 2 (1954), pp. 393--410, https://doi.org/10.1287/opre.2.4.393.
[11]
P. J. Davis, Circulant Matrices, AMS Chelsea Publishing, Providence, RI, 2012.
[12]
E. de Klerk, F. de Oliveira Filho, and D. Pasechnik, Relaxations of combinatorial problems via association schemes, in Handbook on Semidefinite, Conic and Polynomial Optimization, M. F. Anjos and J. B. Lasserre, eds., Internat. Ser. Oper. Res. Management Sci. 166, Springer, Boston, 2012, pp. 171--199, https://doi.org/10.1007/978-1-4614-0769-0_7.
[13]
E. de Klerk and C. Dobre, A comparison of lower bounds for the symmetric circulant traveling salesman problem, Discrete Appl. Math., 159 (2011), pp. 1815--1826, https://doi.org/10.1016/j.dam.2011.01.026.
[14]
E. de Klerk, D. V. Pasechnik, and R. Sotirov, On semidefinite programming relaxations of the traveling salesman problem, SIAM J. Optim., 19 (2008), pp. 1559--1573, https://doi.org/10.1137/070711141.
[15]
E. de Klerk and R. Sotirov, Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry, Math. Program., 133 (2012), pp. 75--91, https://doi.org/10.1007/s10107-010-0411-5.
[16]
R. S. Garfinkel, Minimizing wallpaper waste, part \textup1: A class of traveling salesman problems, Oper. Res., 25 (1977), pp. 741--751, https://doi.org/10.1287/opre.25.5.741.
[17]
I. Gerace and F. Greco, Bounds for the Symmetric Circulant Traveling Salesman Problem, Rapporto Tecnico 4/2006, Dipartimento de Matematica e Informatica, Università di Perugia, 2006.
[18]
I. Gerace and F. Greco, The travelling salesman problem in symmetric circulant matrices with two stripes, Math. Structures Comput. Sci., 18 (2008), pp. 165--175, https://doi.org/10.1017/S0960129508006609.
[19]
I. Gerace and R. Irving, The Traveling Salesman Problem in Circulant Graphs, Technical report, TR-1998-15, Department of Computing Science, University of Glasgow, 1998.
[20]
P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, Well-solved special cases, in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., John Wiley & Sons, New York, 1985, pp. 87--143.
[21]
M. X. Goemans and D. J. Bertsimas, Survivable networks, linear programming relaxations and the parsimonious property, Math. Programming, 60 (1993), pp. 145--166, https://doi.org/10.1007/BF01580607.
[22]
R. M. Gray, Toeplitz and circulant matrices: A review, Found. Trends Commun. Inform. Theory, 2 (2006), pp. 155--239, https://doi.org/10.1561/0100000006.
[23]
F. Greco and I. Gerace, The traveling salesman problem in circulant weighted graphs with two stripes, Electron. Notes Theor. Comput. Sci., 169 (2007), pp. 99--109, https://doi.org/10.1016/j.entcs.2006.07.032.
[24]
F. Greco and I. Gerace, The symmetric circulant traveling salesman problem, in Traveling Salesman Problem, F. Greco, ed., InTech, Rijeka, Croatia, 2008, pp. 181--202, https://doi.org/10.5772/5581.
[25]
S. C. Gutekunst and D. P. Williamson, The unbounded integrality gap of a semidefinite relaxation of the traveling salesman problem, SIAM J. Optim., 28 (2018), pp. 2073--2096, https://doi.org/10.1137/17M1154722.
[26]
S. C. Gutekunst and D. P. Williamson, Semidefinite Programming Relaxations of the Traveling Salesman Problem and Their Integrality Gaps, preprint, https://arxiv.org/abs/1907.09054, 2019.
[27]
M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees, Oper. Res., 18 (1970), pp. 1138--1162, https://doi.org/10.1287/opre.18.6.1138.
[28]
M. Karpinski, M. Lampis, and R. Schmied, New inapproximability bounds for TSP, J. Comput. System Sci., 81 (2015), pp. 1665--1677, https://doi.org/10.1016/j.jcss.2015.06.003.
[29]
M. Karpinski and R. Schmied, On Approximation Lower Bounds for TSP with Bounded Metrics, Electronic Colloquium on Computational Complexity (ECCC), TR12-008, 2012.
[30]
J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), pp. 48--50, https://doi.org/10.2307/2033241.
[31]
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, New York, 1985.
[32]
E. Medova, Using QAP bounds for the circulant TSP to design reconfigurable networks, in Quadratic Assignment and Related Problems, Proceedings of a DIMACS Workshop, New Brunswick, NJ, 1993, pp. 275--292, https://doi.org/10.1090/dimacs/016/14.
[33]
J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems, SIAM J. Comput., 28 (1999), pp. 1298--1309, https://doi.org/10.1137/S0097539796309764.
[34]
T. Mömke and O. Svensson, Removing and adding edges for the traveling salesman problem, J. ACM, 63 (2016), 2, https://doi.org/10.1145/2739008.
[35]
M. Mucha, $\frac{13}{9}$-approximation for graphic TSP, Theory Comput. Syst., 55 (2014), pp. 640--657, https://doi.org/10.1007/s00224-012-9439-7.
[36]
D. Naddef and G. Rinaldi, The crown inequalities for the symmetric traveling salesman polytope, Math. Oper. Res., 17 (1992), pp. 308--326, https://doi.org/10.1287/moor.17.2.308.
[37]
S. Oveis Gharan, A. Saberi, and M. Singh, A randomized rounding approach to the traveling salesman problem, in Proceedings of the 52nd Annual IEEE Symposium on the Foundations of Computer Science, 2011, pp. 550--559, https://doi.org/10.1109/FOCS.2011.80.
[38]
M. W. Padberg and S. Hong, On the symmetric travelling salesman problem: A computational study, in Combinatorial Optimization, M. W. Padberg, ed., Springer, Berlin, Heidelberg, 1980, pp. 78--107, https://doi.org/10.1007/BFb0120888.
[39]
C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances one and two, Math. Oper. Res., 18 (1993), pp. 1--11, https://doi.org/10.1287/moor.18.1.1.
[40]
A. Sebö and J. Vygen, Shorter tours by nicer ears: \textup7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs, Combinatorica, 34 (2014), pp. 597--629, https://doi.org/10.1007/s00493-014-2960-3.
[41]
A. Serdyukov, On some extremal walks in graphs, Upravlyaemye Sistemy, 17 (1978), pp. 76--79.
[42]
D. B. Shmoys and D. P. Williamson, Analyzing the Held-Karp TSP bound: A monotonicity property with application, Inform. Process. Lett., 35 (1990), pp. 281--285, https://doi.org/10.1016/0020-0190(90)90028-V.
[43]
J. A. van der Veen, R. van Dal, and G. Sierksma, The Symmetric Circulant Traveling Salesman Problem, Research Memorandum 429, Institute of Economic Research, Faculty of Economics, University of Groningen, 1991.
[44]
D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press, New York, 2011.
[45]
L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, in Combinatorial Optimization II, V. J. Rayward-Smith, ed., Math. Programming Stud. 13, Springer, Berlin, Heidelberg, 1980, pp. 121--134, https://doi.org/10.1007/BFb0120913.
[46]
Q. F. Yang, R. E. Burkard, E. Çela, and G. J. Woeginger, Hamiltonian cycles in circulant digraphs with two stripes, Discrete Math., 176 (1997), pp. 233--254, https://doi.org/10.1016/S0012-365X(96)00298-1.

Cited By

View all

Index Terms

  1. Characterizing the Integrality Gap of the Subtour LP for the Circulant Traveling Salesman Problem
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Discrete Mathematics
    SIAM Journal on Discrete Mathematics  Volume 33, Issue 4
    2019
    710 pages
    ISSN:0895-4801
    DOI:10.1137/sjdmec.33.4
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2019

    Author Tags

    1. traveling salesman problem
    2. linear program relaxation
    3. integrality gap
    4. subtour LP
    5. approximation algorithms
    6. circulant

    Author Tags

    1. 68W25
    2. 05C85
    3. 90C05
    4. 90C35
    5. 90C27
    6. 90C59

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media