Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hardness and Ease of Curing the Sign Problem for Two-Local Qubit Hamiltonians

Published: 01 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    We examine the problem of determining whether a multiqubit two-local Hamiltonian can be made stoquastic by single-qubit unitary transformations. We prove that when such a Hamiltonian contains one-local terms, then this task can be NP-hard. This is shown by constructing a class of Hamiltonians for which performing this task is equivalent to deciding 3-SAT. In contrast, we show that when such a Hamiltonian contains no one-local terms then this task is easy; namely, we present an algorithm which decides, in a number of arithmetic operations over $\mathbb{R}$ which is polynomial in the number of qubits, whether the sign problem of the Hamiltonian can be cured by single-qubit rotations.

    References

    [1]
    D. Aharonov and A. B. Grilo, Stoquastic PCP vs. randomness, in IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 2019, pp. 1000--1023, https://doi.org/10.1109/FOCS.2019.00065.
    [2]
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM J. Comput., 37 (2007), pp. 166--194, https://doi.org/10.1137/S0097539705447323.
    [3]
    T. Albash, Role of nonstoquastic catalysts in quantum adiabatic optimization, Phys. Rev. A, 99 (2019), 042334, https://doi.org/10.1103/PhysRevA.99.042334.
    [4]
    T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Modern Phys., 90 (2018), 015002, https://doi.org/10.1103/RevModPhys.90.015002.
    [5]
    J. Bausch and E. Crosson, Analysis and limitations of modified circuit-to-Hamiltonian constructions, Quantum, 2 (2018), p. 94, https://doi.org/10.22331/q-2018-09-19-94.
    [6]
    A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994, https://doi.org/10.1137/1.9781611971262.
    [7]
    J. D. Biamonte and P. J. Love, Realizable Hamiltonians for universal adiabatic quantum computers, Phys. Rev. A, 78 (2008), 012352, https://doi.org/10.1103/PhysRevA.78.012352.
    [8]
    R. F. Bishop and D. J. J. Farnell, Marshall-Peierls sign rules, the quantum Monte Carlo method, and frustration, in Recent Progress in Many-Body Theories, World Scientific, 2000, pp. 457--460, https://doi.org/10.1142/9789812792754_0052.
    [9]
    S. Bravyi, A. J. Bessen, and B. M. Terhal, Merlin-Arthur Games and Stoquastic Complexity, preprint, http://arXiv.org/abs/quant-ph/0611021, 2006.
    [10]
    S. Bravyi, D. P. Divincenzo, R. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quantum Inf. Comput., 8 (2008), p. 361--385, https://dl.acm.org/doi/10.5555/2011772.2011773.
    [11]
    S. Bravyi and B. Terhal, Complexity of stoquastic frustration-free Hamiltonians, SIAM J. Comput., 39 (2009), pp. 1462--1485, https://doi.org/10.1137/08072689X.
    [12]
    J. Bringewatt, W. Dorland, S. P. Jordan, and A. Mink, Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians, Phys. Rev. A, 97 (2018), 022323, https://doi.org/10.1103/PhysRevA.97.022323.
    [13]
    S. Chandrasekharan, Fermion bag approach to lattice field theories, Phys. Rev. D, 82 (2010), 025007, https://doi.org/10.1103/PhysRevD.82.025007.
    [14]
    T. Cubitt and A. Montanaro, Complexity classification of local Hamiltonian problems, SIAM J. Comput., 45 (2016), pp. 268--316, https://doi.org/10.1137/140998287.
    [15]
    D. Hangleiter, I. Roth, D. Nagaj, and J. Eisert, Easing the Monte Carlo sign problem, Sci. Adv., 6 (2020), eabb8341, https://doi.org/10.1126/sciadv.abb8341.
    [16]
    M. B. Hastings, Obstructions to classically simulating the quantum adiabatic algorithm, Quantum Inf. Comput., 13 (2013), p. 1038--1076, https://dl.acm.org/doi/10.5555/2535639.2535647.
    [17]
    M. B. Hastings, How quantum are non-negative wavefunctions?, J. Math. Phys., 57 (2016), 015210, https://doi.org/10.1063/1.4936216.
    [18]
    N. Hatano and M. Suzuki, Representation basis in quantum Monte Carlo calculations and the negative-sign problem, Phys. Lett. A, 163 (1992), pp. 246--249, https://doi.org/10.1016/0375-9601(92)91006-D.
    [19]
    I. Hen, Resolution of the sign problem for a frustrated triplet of spins, Phys. Rev. E, 99 (2019), 033306, https://doi.org/10.1103/PhysRevE.99.033306.
    [20]
    I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718--720, https://doi.org/10.1137/0210055.
    [21]
    L. Hormozi, E. W. Brown, G. Carleo, and M. Troyer, Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass, Phys. Rev. B, 95 (2017), 184416, https://doi.org/10.1103/PhysRevB.95.184416.
    [22]
    M. Ioannou, Stoquastic Hamiltonians and the Monte Carlo sign problem, Ph.D thesis, LMU Munich, 2019; supervision by Prof. B. M. Terhal.
    [23]
    M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo methods, Phys. Rev. A, 94 (2016), 042318, https://doi.org/10.1103/PhysRevA.94.042318.
    [24]
    J. Klassen and B. M. Terhal, Two-local qubit Hamiltonians: When are they stoquastic?, Quantum, 3 (2019), p. 139, https://doi.org/10.22331/q-2019-05-06-139.
    [25]
    D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2005.
    [26]
    E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, Sign problem in the numerical simulation of many-electron systems, Phys. Rev. B, 41 (1990), pp. 9301--9307, https://doi.org/10.1103/PhysRevB.41.9301.
    [27]
    M. Marvian, D. A. Lidar, and I. Hen, On the computational complexity of curing non-stoquastic Hamiltonians, Nature Commun., (2019), https://www.nature.com/articles/s41467-019-09501-6.
    [28]
    H. Nishimori and K. Takada, Exponential enhancement of the efficiency of quantum annealing by non-stoquastic Hamiltonians, Frontiers ICT, 4 (2017), 2, https://doi.org/10.3389/fict.2017.00002.
    [29]
    I. Ozfidan et al., Demonstration of a nonstoquastic Hamiltonian in coupled superconducting flux qubits, Phys. Rev. Appl., 13 (2020), 034037, https://doi.org/10.1103/PhysRevApplied.13.034037.
    [30]
    Z. Ringel and D. L. Kovrizhin, Quantized gravitational responses, the sign problem, and quantum complexity, Sci. Adv., 3 (2017), e1701758, https://doi.org/10.1126/sciadv.1701758.
    [31]
    M. Suzuki, Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, 1993, https://doi.org/10.1142/2262.
    [32]
    G. Torlai, J. Carrasquilla, M. T. Fishman, R. G. Melko, and M. P. A. Fisher, Wave-function positivization via automatic differentiation, Phys. Rev. Res., 2 (2020), 032060, https://doi.org/10.1103/PhysRevResearch.2.032060.
    [33]
    M. Troyer, Boulder School 2010: Computational and Conceptual Approaches to Quantum Many-Body Systems, Lecture notes, Yale University, 2010.
    [34]
    W. Vinci and D. A. Lidar, Non-stoquastic Hamiltonians in quantum annealing via geometric phases, npj Quant. Inf., 3 (2017), 38, https://www.nature.com/articles/s41534-017-0037-z.
    [35]
    P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Continuous-time solver for quantum impurity models, Phys. Rev. Lett., 97 (2006), 076405, https://doi.org/10.1103/PhysRevLett.97.076405.

    Cited By

    View all

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Computing
    SIAM Journal on Computing  Volume 49, Issue 6
    ISSN:0097-5397
    DOI:10.1137/smjcat.49.6
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2020

    Author Tags

    1. quantum
    2. computational complexity
    3. stoquastic
    4. sign problem
    5. quantum Monte Carlo

    Author Tag

    1. 81-08

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media