Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Framework for Exponential-Time-Hypothesis--Tight Algorithms and Lower Bounds in Geometric Intersection Graphs

Published: 01 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    We give an algorithmic and lower bound framework that facilitates the construction of subexponential algorithms and matching conditional complexity bounds. It can be applied to intersection graphs of similarly-sized fat objects, yielding algorithms with running time $2^{O(n^{1-1/d})}$ for any fixed dimension $d\ge 2$ for many well-known graph problems, including Independent Set, $r$-Dominating Set for constant $r$, and Steiner Tree. For most problems, we get improved running times compared to prior work; in some cases, we give the first known subexponential algorithm in geometric intersection graphs. Additionally, most of the obtained algorithms are representation-agnostic, i.e., they work on the graph itself and do not require the geometric representation. Our algorithmic framework is based on a weighted separator theorem and various treewidth techniques. The lower bound framework is based on a constructive embedding of graphs into $d$-dimensional grids, and it allows us to derive matching $2^{\Omega(n^{1-1/d})}$ lower bounds under the exponential time hypothesis even in the much more restricted class of $d$-dimensional induced grid graphs.

    References

    [1]
    J. Alber and J. Fiala, Geometric separation and exact solutions for the parameterized independent set problem on disk graphs, J. Algorithms, 52 (2004), pp. 134--151, https://doi.org/10.1016/j.jalgor.2003.10.001.
    [2]
    B. Aronov, M. de Berg, E. Ezra, and M. Sharir, Improved bounds for the union of locally fat objects in the plane, SIAM J. Comput., 43 (2014), pp. 543--572, https://doi.org/10.1137/120891241.
    [3]
    J. Baste and D. M. Thilikos, Contraction-Bidimensionality of Geometric Intersection Graphs, in 12th International Symposium on Parameterized and Exact Computation (IPEC 2017), D. Lokshtanov and N. Nishimura, eds., Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, Vol. 89, 2018, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, pp. 5:1--5:13, https://doi.org/10.4230/LIPIcs.IPEC.2017.5.
    [4]
    M. \BIBSORTBergde Berg, H. L. Bodlaender, S. Kisfaludi-Bak, and S. Kolay, An ETH-tight exact algorithm for Euclidean TSP, in Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, M. Thorup, ed., IEEE, Piscataway, NJ, 2018, pp. 450--461, https://doi.org/10.1109/FOCS.2018.00050.
    [5]
    M. de Berg, H. L. Bodlaender, S. Kisfaludi-Bak, D. Marx, T. C. van der Zanden, A framework for ETH-tight algorithms and lower bounds in geometric intersection graphs, in STOC 2018, ACM, New York, 2018, pp. 574--586, https://doi.org/10.1145/3188745.3188854.
    [6]
    M. \BIBSORTBergde Berg and S. Kisfaludi-Bak, Lower bounds for dominating set in ball graphs and for weighted dominating set in unit-ball graphs, in Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, Lecture Notes in Comput, Sci. 12160, Springer, Cham, Switzerland, 2020, pp. 31--48, https://doi.org/10.1007/978-3-030-42071-0_5.
    [7]
    M. \BIBSORTBergde Berg, S. Kisfaludi-Bak, and G. J. Woeginger, The complexity of dominating set in geometric intersection graphs, Theoret. Comput. Sci., 769 (2019), pp. 18--31, https://doi.org/10.1016/j.tcs.2018.10.007.
    [8]
    C. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzażewski, Fine-grained complexity of coloring unit disks and balls, J. Comput. Geom., 9 (2018), pp. 47--80, https://doi.org/10.20382/jocg.v9i2a4.
    [9]
    H. L. Bodlaender, A partial $k$-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209 (1998), pp. 1--45, https://doi.org/10.1016/S0304-3975(97)00228-4.
    [10]
    H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth, Inform. and Comput., 243 (2015), pp. 86--111, https://doi.org/10.1016/j.ic.2014.12.008.
    [11]
    H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk, A $c^k n$ 5-approximation algorithm for treewidth, SIAM J. Comput., 45 (2016), pp. 317--378, https://doi.org/10.1137/130947374.
    [12]
    H. L. Bodlaender and F. V. Fomin, Tree decompositions with small cost, Discrete Appl. Math., 145 (2005), pp. 143--154, https://doi.org/10.1016/j.dam.2004.01.008.
    [13]
    H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math., 6 (1993), pp. 181--188, https://doi.org/10.1137/0406014.
    [14]
    H. L. Bodlaender and U. Rotics, Computing the treewidth and the minimum fill-in with the modular decomposition, Algorithmica, 36 (2003), pp. 375--408, https://doi.org/10.1007/s00453-003-1026-5.
    [15]
    H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Comput. Geom., 9 (1998), pp. 3--24, https://doi.org/10.1016/S0925-7721(97)00014-X.
    [16]
    B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math., 86 (1990), pp. 165--177, https://doi.org/10.1016/0012-365X(90)90358-O.
    [17]
    B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp. 125--150, https://doi.org/10.1007/s002249910009.
    [18]
    M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, Switzerland, 2015.
    [19]
    B. Escoffier, L. Gourvès, and J. Monnot, Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs, J. Discrete Algorithms, 8 (2010), pp. 36--49, https://doi.org/10.1016/j.jda.2009.01.005.
    [20]
    F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi, Finding, hitting and packing cycles in subexponential time on unit disk graphs, in Proceedings of the 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, LIPIcs Leibniz Int. Proc. Inform. 80, Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Wadern, Germany, 2017, 65, https://doi.org/10.4230/LIPIcs.ICALP.2017.65.
    [21]
    F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi, ETH-tight algorithms for long path and cycle on unit disk graphs, in 36th International Symposium on Computational Geometry, SOCG 2020, LIPIcs Leibniz Int. Proc. Inform. 164, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 44, https://doi.org/10.4230/LIPIcs.SoCG.2020.44.
    [22]
    F. V. Fomin, D. Lokshtanov, and S. Saurabh, Bidimensionality and geometric graphs, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, SIAM, Philadelphia, 2012, pp. 1563--1575.
    [23]
    B. Fu, Theory and application of width bounded geometric separators, J. Comput. System Sci., 77 (2011), pp. 379 -- 392, https://doi.org/10.1016/j.jcss.2010.05.003.
    [24]
    M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math., 32 (1977), pp. 826--834, https://doi.org/10.1137/0132071.
    [25]
    M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput., 5 (1976), pp. 704--714, https://doi.org/10.1137/0205049.
    [26]
    M. C. Golumbic and U. Rotics, On the clique-width of some perfect graph classes, Internat. J. Found. Comput. Sci, 11 (2000), pp. 423--443, https://doi.org/10.1142/S0129054100000260.
    [27]
    S. Har-Peled and K. Quanrud, Approximation algorithms for polynomial-expansion and low-density graphs, SIAM J. Comput., 46 (2017), pp. 1712--1744, https://doi.org/10.1137/16M1079336.
    [28]
    J. E. Hopcroft and R. M. Karp, An n\(^ 5/2\) algorithm for maximum matchings in bipartite graphs, SIAM J. Comput., 2, pp. 225--231, https://doi.org/10.1137/0202019.
    [29]
    R. Impagliazzo and R. Paturi, On the complexity of $k$-SAT, J. Comput. System Sci., 62 (2001), pp. 367--375, https://doi.org/10.1006/jcss.2000.1727.
    [30]
    R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. System Sci., 63 (2001), pp. 512--530, https://doi.org/10.1006/jcss.2001.1774.
    [31]
    A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Comput., 11 (1982), pp. 676--686, https://doi.org/10.1137/0211056.
    [32]
    H. Ito and M. Kadoshita, Tractability and intractability of problems on unit disk graphs parameterized by domain area, in Proceedings of the 9th International Symposium on Operations Research and Its Applications, ISORA 2010, 2010, pp. 120--127.
    [33]
    R. J. Kang and T. Müller, Sphere and dot product representations of graphs, Discrete Comput. Geom., 47 (2012), pp. 548--568, https://doi.org/10.1007/s00454-012-9394-8.
    [34]
    S. Kisfaludi-Bak, ETH-Tight Algorithms for Geometric Network Problems, PhD thesis, Technische Universiteit Eindhoven, Department of Mathematics and Computer Science, Eindhoven, The Netherlands, 2019, https://research.tue.nl/en/publications/eth-tight-algorithms-for-geometric-network-problems.
    [35]
    S. Kisfaludi-Bak and T. C. van der Zanden, On the exact complexity of Hamiltonian cycle and $q$-colouring in disk graphs, in Proceedings 10th International Conference on Algorithms and Complexity, CIAC 2017, D. Fotakis, A. Pagourtzis, and V. T. Paschos, eds., Lecture Notes in Computer Science 10236, Springer, Cham, Switzerland, 2017, pp. 369--380, https://doi.org/10.1007/978-3-319-57586-5_31.
    [36]
    D. König, Gráfok és mátrixok, Mat. Fiz. Lapok, 38 (1931), pp. 116--119 (in Hungarian).
    [37]
    D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329--343, https://doi.org/10.1137/0211025.
    [38]
    R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177--189, https://doi.org/10.1137/0136016.
    [39]
    R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput., 9 (1980), pp. 615--627, https://doi.org/10.1137/0209046.
    [40]
    D. Marx, The square root phenomenon in planar graphs, in Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, 2013, Part II, Springer, Berlin, 2013, p. 28, https://doi.org/10.1007/978-3-642-39212-2_4.
    [41]
    D. Marx and M. Pilipczuk, Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams, in Proceedings of the 23rd Annual European Symposium on Algorithms, ESA 2015, Lecture Notes Comput. Sci., 9294, Springer, Heidelberg, Germany, 2015, pp. 865--877, https://doi.org/10.1007/978-3-662-48350-3_72.
    [42]
    D. Marx and A. Sidiropoulos, The limited blessing of low dimensionality: When $1-1/d$ is the best possible exponent for $d$-dimensional geometric problems, in Proceedings of the 30th Annual Symposium on Computational Geometry, SOCG 2014, ACM, New York, 2014, pp. 67--76, https://doi.org/10.1145/2582112.2582124.
    [43]
    S. Oum, Rank-width: Algorithmic and structural results, Discrete Appl. Math., 231 (2017), pp. 15--24, https://doi.org/10.1016/j.dam.2016.08.006.
    [44]
    J. Plesník, The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two, Inform. Process. Lett., 8 (1979), pp. 199--201, https://doi.org/10.1016/0020-0190(79)90023-1.
    [45]
    N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory, Ser. B, 63 (1995), pp. 65--110, https://doi.org/10.1006/jctb.1995.1006.
    [46]
    W. D. Smith and N. C. Wormald, Geometric separator theorems and applications, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS 1998, IEEE Computer Society, Los Alamitos, CA, 1998, pp. 232--243, https://doi.org/10.1109/SFCS.1998.743449.
    [47]
    E. Speckenmeyer, Untersuchungen zum Feedback-vertex-set-Problem in ungerichteten Graphen, PhD thesis, University of Paderborn, Paderborn, Germany, 1983, http://d-nb.info/831085894.
    [48]
    C. D. Thompson and H. T. Kung, Sorting on a mesh-connected parallel computer, in Proceedings of the 8th Annual ACM Symposium on Theory of Computing, STOC 1976, ACM, New York, 1976, pp. 58--64, https://doi.org/10.1145/800113.803632.
    [49]
    C. D. Thompson and H. T. Kung, Sorting on a mesh-connected parallel computer, Comm. ACM, 20 (1977), pp. 263--271, https://doi.org/10.1145/359461.359481.
    [50]
    C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math., 8 (1984), pp. 85--89, https://doi.org/10.1016/0166-218X(84)90081-7.
    [51]
    F. van den Eijkhof, H. L. Bodlaender, and M. Koster, Safe reduction rules for weighted treewidth, Algorithmica, 47 (2007), pp. 139--158, https://doi.org/10.1007/s00453-006-1226-x.
    [52]
    G. J. Woeginger, Exact algorithms for NP-hard problems: A survey, in Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, Proceedings of the 5th International Workshop on Combinatorial Optimization, Lecture Notes in Comput. Sci. 2750, Springer, Berlin, 2003, pp. 185--208, https://doi.org/10.1007/3-540-36478-1_17.
    [53]
    T. C. van der Zanden, Theory and Practical Applications of Treewidth, PhD thesis, Universiteit Utrecht, Department of Information and Computing Sciences, Utrecht, The Netherlands, 2019, https://dspace.library.uu.nl/handle/1874/381134.

    Cited By

    View all

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SIAM Journal on Computing
    SIAM Journal on Computing  Volume 49, Issue 6
    ISSN:0097-5397
    DOI:10.1137/smjcat.49.6
    Issue’s Table of Contents

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 01 January 2020

    Author Tags

    1. unit disk graph
    2. separator
    3. fat objects
    4. subexponential
    5. ETH

    Author Tags

    1. 68U05
    2. 68W05
    3. 68Q25
    4. 05C10
    5. 05C69

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Algorithms and Turing Kernels for Detecting and Counting Small Patterns in Unit Disk GraphsSOFSEM 2024: Theory and Practice of Computer Science10.1007/978-3-031-52113-3_29(413-426)Online publication date: 19-Feb-2024
    • (2023)Clique-Based Separators for Geometric Intersection GraphsAlgorithmica10.1007/s00453-022-01041-885:6(1652-1678)Online publication date: 1-Jun-2023
    • (2023)Faster Algorithms for Cycle Hitting Problems on Disk GraphsAlgorithms and Data Structures10.1007/978-3-031-38906-1_3(29-42)Online publication date: 31-Jul-2023
    • (2022)Computing List Homomorphisms in Geometric Intersection GraphsGraph-Theoretic Concepts in Computer Science10.1007/978-3-031-15914-5_23(313-327)Online publication date: 22-Jun-2022

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media