Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Stochastic Framework for Atomistic Fracture

Published: 01 January 2022 Publication History

Abstract

We present a stochastic modeling framework for atomistic propagation of a Mode I surface crack, with atoms interacting according to the Lennard--Jones interatomic potential at zero temperature. Specifically, we invoke the Cauchy--Born rule and the maximum entropy principle to infer probability distributions for the parameters of the interatomic potential. We then study how uncertainties in the parameters propagate to the quantities of interest relevant to crack propagation, namely, the critical stress intensity factor and the lattice trapping range. For our numerical investigation, we rely on an automated version of the so-called numerical-continuation enhanced flexible boundary NCFlex algorithm.

References

[1]
E. Bitzek, J. R. Kermode, and P. Gumbsch, Atomistic aspects of fracture, Int. J. Fracture, 191 (2015), pp. 13--30.
[2]
J. Braun, M. Buze, and C. Ortner, The effect of crystal symmetries on the locality of screw dislocation cores, SIAM J. Math. Anal., 51 (2019), pp. 1108--1136.
[3]
M. Buze, T. Hudson, and C. Ortner, Analysis of an atomistic model for anti-plane fracture, Math. Models Methods Appl. Sci., 29 (2019), pp. 2469--2521.
[4]
M. Buze, T. Hudson, and C. Ortner, Analysis of cell size effects in atomistic crack propagation, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1821--1847.
[5]
M. Buze and J. R. Kermode, Numerical-continuation-enhanced flexible boundary condition scheme applied to mode-i and mode-iii fracture, Phys. Rev. E, 103 (2021), 033002.
[6]
W. A. Curtin, On lattice trapping of cracks, J. Mater. Res., 5 (1990), pp. 1549--1560.
[7]
W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Ration. Mech. Anal., 183 (2007), pp. 241--297.
[8]
J. L. Ericksen, On the Cauchy-Born rule, Math. Mech. Solids, 13 (2008), pp. 199--220.
[9]
J. L. Ericksen, The Cauchy and Born hypotheses for crystals, in Phase Transformations and Material Instabilities in Solids, M. E. Gurtin, ed., 1984, pp. 61--77.
[10]
S. L. Frederiksen, K. W. Jacobsen, K. S. Brown, and J. P. Sethna, Bayesian ensemble approach to error estimation of interatomic potentials, Phys. Rev. Lett., 93 (2004), 165501.
[11]
G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), pp. 445--478.
[12]
J. Guilleminot, Modeling non-Gaussian random fields of material properties in multiscale mechanics of materials, in Uncertainty Quantification in Multiscale Materials Modeling, Y. Wang and D. L. McDowell, eds., Elsevier Ser. Mech. Adv. Mat., Woodhead Publishing, Sawston, UK, 2020, pp. 385--420.
[13]
J. Guilleminot and C. Soize, On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, J. Elasticity, 111 (2013), pp. 109--130.
[14]
J. Guilleminot and C. Soize, Non-Gaussian random fields in multiscale mechanics of heterogeneous materials, Encyclopedia Contin. Mech., H. Altenbach and A. Öchsner, eds., Springer, Berlin, 2020, pp. 1826--1834.
[15]
P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Modern. Phys., 62 (1990), pp. 251--341.
[16]
E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev., 106 (1957), pp. 620--630.
[17]
J. R. Kermode, T. Albaret, D. Sherman, N. Bernstein, P. Gumbsch, M. C. Payne, G. Csányi, and A. De Vita, Low-speed fracture instabilities in a brittle crystal, Nature, 455 (2008), pp. 1224--1227.
[18]
C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics, 8th ed., Wiley, New York, 1996.
[19]
L. D. Landau, E. M. Lifshitz, and J. B. Sykes, Theory of Elasticity, Course Theoret. Phys., Pergamon Press, Oxford, 1989.
[20]
J. E. Lennard-Jones, On the determination of molecular fields. III. From crystal measurements and kinetic theory data, Proc. A, 106 (1924), pp. 709--718.
[21]
S. Longbottom and P. Brommer, Uncertainty quantification for classical effective potentials: An extension to potfit, Model. Simul. Mater. Sci. Eng., 27 (2019), 044001.
[22]
M. M. Mehrabadi and S. C. Cowin, Eigentensors of linear anisotropic elastic materials, Quart. J. Mech. Appl. Math., 43 (1990), pp. 15--41.
[23]
M. L. Mehta, Random Matrices, Elsevier, New York, 2004.
[24]
L. A. Mihai, T. E. Woolley, and A. Goriely, Stochastic isotropic hyperelastic materials: Constitutive calibration and model selection, Proc. A, 474 (2018), 20170858.
[25]
C. Ortner and F. Theil, Justification of the Cauchy-Born approximation of elastodynamics, Arch. Ration. Mech. Anal., 207 (2013), pp. 1025--1073.
[26]
M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev., 55 (2002), pp. 35--60.
[27]
J. E. Sinclair, The influence of the interatomic force law and of kinks on the propagation of brittle cracks, Philos. Mag., 31 (1975), pp. 647--671.
[28]
C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 26--64.
[29]
C. Soize, Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, Inter. Disp. Appl. Springer, Berlin, 2017.
[30]
C. T. Sun and Z.-H. Jin, Fracture Mechanics, Academic Press, New York, 2012.
[31]
R. Thomson, C. Hsieh, and V. Rana, Lattice trapping of fracture cracks, J. Appl. Phys., 42 (1971), pp. 3154--3160.
[32]
M. F. Thorpe and I. Jasiuk, New results in the theory of elasticity for two-dimensional composites, Proc. Math. Phys. Sci., 438 (1992), pp. 531--544.
[33]
[34]
M. Wen and E. B. Tadmor, Uncertainty quantification in molecular simulations with dropout neural network potentials, npj Comput. Mater., 6 (2020), pp. 1--10.
[35]
M. Wen, S. M. Whalen, R. S. Elliott, and E. B. Tadmor, Interpolation effects in tabulated interatomic potentials, Model. Simul. Mater. Sci. Eng., 23 (2015), 074008.
[36]
A. T. Zehnder, Fracture Mechanics, Springer, Berlin, 2012.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics  Volume 82, Issue 2
Apr 2022
394 pages
ISSN:0036-1399
DOI:10.1137/smjmap.82.2
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. elasticity
  2. interatomic potential
  3. stress
  4. fracture
  5. stochastic modelling
  6. numerical algorithms

Author Tags

  1. 74R10
  2. 74S60
  3. 74G15

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media